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Abstract
Vehicle actuated controls are designed to adapt each green phase according to the variability of the arrivals. Therefore, waiting times for the drivers can be variable too depending on these time-varying signal settings. This paper presents a new modeling approach for queues lengths and vehicle actuated control settings based on probabilistic theory. This methodology allows the computation of the dynamic and the stochastic behavior of such variables with any arrival distribution.
The results of the probabilistic approach have been compared to the results of repeated microscopic simulations, showing good consistency between the two approaches. The smaller number of parameters and computing times than the latter makes the model suitable for planning and design problems, as well as model-based travel time predictions.
1. Introduction

Traffic control at intersections is done by means of traffic lights that are most of the times operated automatically using a cyclic sequence of green, amber and red lights. The timing of the green and red duration can be fixed and predetermined (fixed time or pre-timed control). Another alternative is semi-actuated control. The main flow is interrupted after a green time of at least the minimum green time if the detector on the side road is activated. The green time on the minor road is determined by gap measurements, i.e. the green phase terminates when the gap between two vehicles is larger than a certain maximum. Fully actuated control is the mode of operation where all approaches have detectors and all green phases are controlled by means of detector information. This paper deals with this last class of signal controls.
The choice of which control type to implement, and the determination of the signal settings are mainly done with the objective of reducing the delay to the vehicles. 
  Actuated controls work very differently from fixed or pre-phased controls, since signal settings are not predetermined but they are determined by the headway distribution of the arrivals at the stop line. The basic mechanism is to extend the green time reserved to a flow stream until the (time) headway between two vehicles is larger than a certain threshold. This green time is usually constrained to be within minimum and maximum values, which are mainly determined by the geometry of the intersection. 
Since the stochastic nature of the arrivals, different headway distributions and different flow rates can be observed from cycle to cycle, leading to different green time extensions. The assigned green times are therefore variable according to the arrival time of vehicles at the intersection during the red and green phases. If one considers that the queue formed during the red phase depends on the number of vehicles arriving during that phase and on the length of the red phase itself, which depends on all green time extensions given to the conflicting streams, the relationship of these variables to the expected delay experienced by one traveler is quite complex.
This paper analytically solves this problem by computing the probability distribution of effective green and red times, and the eventual overflow queue lengths that can be observed at vehicle actuated controls with any arrival time distribution. The model assumes that no overflow queue is observed if the green time is below the maximum value. The probability of queue lengths at the end of each phase, together with the assigned green and red times are computed sequentially, since the number of arrivals of one flow-group during one red phase depends on the length of the red phase itself, which is determined by the green time given to all other flows of the dominant conflict group.

The main contribution of this model is that it can deal with the dynamic and stochastic character of the arrivals. This effect is particularly important when the signal operates near the capacity and the green is likely to reach the maximum value. In these situations green times can be extended up to their maximum value because long overflow queues have occurred previously.
The paper is structured as follows. The next section gives a literature review on vehicle actuated controls. A description of the probabilistic relationships that connect arrivals, queues and signal settings, and which form the basis of the probabilistic model, is given in Section 3. The probabilistic model is later presented in Section 4 and a numerical example follows. Finally comparison with the results of a commercial microsimulation program and conclusions close this paper.
2. Literature review
The large number of vehicle actuated control types designed in the past and the complex architecture of such systems justifies the lack of a general theory of expectation values of queues and delays with traffic actuated controls (Rouphail, 2000). Garwood (Garwood, 1940) proposed the first model for a one-way street using probability theory. The model is developed in a similar way as the model presented in this paper, although it is restricted to Poisson arrivals. The probabilistic approach was also adopted by Darroch et al. (Darroch, 1964) under the assumption of exponentially distributed arrival times, and Lehoczky (Lehoczky, 1972), who assumed general arrival distribution and Markovian dependence among the traffic flow directions.  All these models do not explicitly consider however the time-dependent behavior of these controls under congested conditions and especially in the presence of overflow queues from previous cycles.
An alternative model was proposed by Morris and Pak-Poy (Morris, 1967) with an application on a signal coordinating two one-way streets. For each traffic condition they computed the optimal vehicle interval to minimize the total delay. Newell (Newell, 1971), Dunne (Dunne, 1967) and Cowan (Cowan, 1978) studied the same problem under the assumption of respectively uniform, binomial and bunched exponential distributions for the arrival process and developed approximate formulas of delays and expectation values of green and red time extensions.
Courage and Papapanou (Courage, 1977) applied heuristics to adapt the well known Webster’s (Webster, 1958) delay formula for fixed time. Optimal cycle lengths were used to compute the cycle time in undersaturated conditions using the formula:
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where 
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 is the lost time in the cycle and 
[image: image3.wmf]i

y

 is the volume to saturation flow ratio. 
The Highway Capacity Manual (TRB, 2000) considers simply a discount factor k in between 0.04 and 0.5 in the uniform delay component of the fixed control delay formula to account for vehicle actuated mechanism. The manual also gives an approximate expression of the average signal cycle:
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where 
[image: image5.wmf]c
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 is the critical volume-to-capacity ratio (
[image: image6.wmf]c

x

=0.95 in the HCM200). The effective green is given by considering the equi-saturation method as follows:
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where 
[image: image8.wmf]i
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 and 
[image: image9.wmf]i
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 are respectively the volume-to-capacity and the volume-to-saturation flow ratios for the approach  
[image: image10.wmf]i

.
Lin and Mazdeysa (Lin, 1983) proposed an alternative extension of the Webster’s delay formula, using the above expressions for the green and cycle times, by including two extra parameters, 
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The above models were all developed under the assumption of undersaturated conditions. To overcome this limitation, Li et al. (Li, 1994) proposed to include a parameter 
[image: image14.wmf]k

 in the Australian Capacity Manual time-dependent overflow delay model to account for fully actuated signals:
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Using this formulation, Akcelik et al. (Akcelik, 1997) developed simple heuristic formulas to estimate average cycle times and green times for various types of actuated signal control. Analytical models for delay, queue length, clearance time etc. were also developed and compared with microsimulation.

Although several delay formulas have been proposed the complex behavior of traffic actuated control systems is not yet fully explored in a dynamic environment. It is in fact questionable whether the model for fixed control could simply be adapted with a discount factor, as it was done for the Webster’s formula and the HCM2000, since the service mechanisms are so different. Moreover, these models compute expectation values, but, as already said in the introduction, queues, waiting times and signal settings are stochastic and therefore a model that enables one to evaluate their distribution should be very important too.
3. The probabilistic nature of vehicle actuated controls
Actuated control phase plans are in general determined by the headway distribution of the arrivals at the intersection. The basic mechanism is to extend the green phase until no vehicle is detected by the detection point within a certain time period. This green time is usually constrained to be within minimum and maximum values, which are mainly determined by the geometry of the intersection. Figure 1 explains how vehicle actuated signals work. The figure shows two loop detectors placed underneath the road pavement and at some distance from the stop line.
[Figure 1]

The closest loop to the traffic signal (presence loop) detects whether at least one vehicle arrives during one cycle length. If no vehicles arrive the signal will never turn green if no guaranteed green time is designed. In this paper we consider a minimum guaranteed green time for each flow stream. The second loop (passage loop) monitors the time headway between two sequential vehicles. If the loop is not occupied a time counts and if no vehicles pass within this time (called here unit extension) the signal switches to amber. The length of the detector determines the minimum headway below which green time is extended. The mechanism is explained more in detail with Figure 2.
[Figure 2]

Figure 2 (a) represents the case of a queue located over the passage detector. This can be observed during the red phase, when the queue builds up, and also during the green phase, when vehicles are being served while other vehicles reach the back of the queue in the meantime. As long as at least one vehicle is detected by the passage loop the green time is extended, unless this time is in between a minimum and a maximum value. Figure 2 (b) and (c) are two cases in which green time is still extended because vehicles arrive in short times. Figure 2 (b) represents the case of only one vehicle detected within the unit extension, while Figure 2 (c) shows two vehicles passing the detector within the same unit extension. Finally Figure 2 (d) shows when the distance between two consecutive vehicles is larger than the length of the detector. When the gap between these vehicles is large enough (i.e. larger than the unit extension) the signal will turn to amber. Other vehicle actuated mechanisms consider a fixed time extension for each vehicle counted, independently on their time headway. This mechanism is therefore simpler to be formulated since the green time extension becomes only a function of the number of arrivals within a cycle.
The queue length shown in Figure 2 (a) can be variable for several reasons. Therefore, the queue length at the end of this red phase will be variable too and it will imply different green times. Furthermore the red phase itself can vary, since it depends on how much green time is given to all conflicting streams.

While all vehicles queued up during the red phase are being served since the sequent green phase starts, more vehicles can join the queue and extend further the green phase. This number will consequently be dependent on the number of vehicles queued up during the red phase. If the maximum green time extension is not yet reached by the above vehicles queued up, the signal will remain green until the (time) headway between two consecutive vehicles is larger than a certain threshold value (unit extension), which will also depend on the arrival distribution.
4. Probabilistic model formulation
The system as it is described in Section 3 applies to single service points. Moreover, the model described in this section is developed under the assumption of deterministic service rate, i.e. vehicles will leave in regular time gaps as soon as a green phase starts. In reality these factors will certainly influence the variability of this system. A multilane approach, or an intersection where priority for public transport vehicles is considered, will have different results than the ones presented later in this paper. A stochastic service rate will also affect the mechanism. We leave these issues for later studies, since the main scope of this paper is to directly relate the distribution of the arrivals to the distribution of signal settings and queue lengths.
This model has been recently developed by the first author and presented in earlier studies (Viti 2006a, Viti 2006b). In this paper we compare it with microscopic simulations to test its consistency with a more detailed modeling approach. This comparison is done in Section 5.

Since the model requires a sequential computation of the variables green, red and queue lengths, an initial known green or red time queue length distributions are required. We suppose an initial red phase known (e.g. set to the minimum value) and zero queue at the start of this red phase.
Computation of green time extension due to vehicles waiting in the queue
Let 
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 be the unit extension, assumed known and constant. Let 
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 during the red phase 
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. If we assume constant service rate 
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 for each vehicle the expected green time given to serve these vehicles is:
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The queue length 
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 is determined by the number of vehicles arriving only during the red phase. If one assumes uniform time headway, the expected green time is computed with the above formula by using simply the average flow rate. The probability distribution of green times at flow stream 
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 is computed knowing the probability distribution of arrivals at 
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 and the distribution of red times at the previous phase, which depends on the distribution of arrivals at all other streams.

If 
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 is the arrival rate (in vehicles per second), and 
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 is the red time at the previous cycle one can compute the probability of a certain number of vehicles 
[image: image27.wmf]k

 queuing up during the red phase of length 
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 as:
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Where Pr(.) means the probability distribution assumed for a variable. The formula is obtained by assuming that the arrival rate and the red time are independent stochastic variables. The integrals are assumed computed within the maximum, 
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The probability of a green time 
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 needed to clear the queue at the end of the red phase to be a value 
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 is given by the following condition:
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This value does not yet consider eventual vehicles arriving during the green phase and while the formed queue is served. While clearing the queue formed during the red phase, other vehicles may in fact join the queue. The following formula computes the probability for these vehicles. In this formula the probability of red time used to calculate the queue length in the red phase is simply replaced by the probability of green time needed to clear this queue:
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Accordingly, green time is adapted to compute this extra queue with the following formula:
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Formulae 
(10)

 are respectively lower bounds of the total number of vehicles arriving during the green phase and of the green time extension due to these vehicles. While green is extended other vehicles might join the queue during this period, extending the green phase further. This process might be repeated until the effects on the total green and the number of vehicles becomes negligible. The probability of green time due to all vehicles in queue (9)

- GOTOBUTTON ZEqnNum259559  \* MERGEFORMAT  (assuming so far an empty signal at the start of the red phase) is thus given by the following relationship:
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The total queue to dissipate within this time is computed accordingly.
Green time extension due to vehicles passing with short arrival headways

Apart from the green time assigned to clear the queue, one should take into account that the green phase is extended as long as vehicles pass the detector within the unit extension, which it can happen also when the queue has been fully served but vehicles are still arriving in short headways. To account for this extra-time one can use the distribution of arrival headways instead of the number of vehicles arriving within the time period. A Poisson distribution can describe for example the probability of observing 
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 arrivals (with average rate 
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In a sequence of 
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 arrivals one can observe vehicles passing with random time headways. The time headway distribution is therefore the probability of observing 0 vehicles within 
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 is given by the following formula:
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For Poisson distributed arrivals this formulation can be simplified after some easy manipulations:
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Even if green time extension is needed, one should compute the probability that this extension time is actually available. The probability of a certain number of seconds available for eventual green time extension before the maximum green extension is easily derived from the probability of green time due to the formed queue (Formula 
(11)

). The probability of having an extension of exactly  GOTOBUTTON ZEqnNum573171  \* MERGEFORMAT  seconds (expressed as an integer value) is therefore given by the following relationship:
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The probability of a total green time 
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 is finally given by the following relationship:
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Green times are computed using this method for each flow stream of the intersection and the total cycle is computed by summing up all green times at each conflicting stream, together with the corresponding lost times.
Computation of the overflow queue length at the end of the green phase
Overflow queues are assumed to occur only when the intersection is oversaturated and the maximum green extension is met. If the signal phase reaches the maximum green extension, one should calculate the eventual overflow queue, which will have to wait for the next green phase. Overflow queue occurs therefore only if 
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The corresponding probability is computed by the following formula:
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The square brackets in the summation limit are used to specify an integer value.

The effect of overflow queues on the following green times
Since an eventual overflow queue should be cleared in the next green phase, the computation of the queue length at the end of the red phase should also consider that. Formulas (8)

 should therefore be modified to account for this queue. The new formulas for the queue length distribution at the end of the red phase that includes the overflow queue carried over the previous green phase is the following:
(7)

 and 
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Computation of red time probability

Last step to compute the expected green time and queues is to derive the probability distribution of red times at the previous cycle. The red time is determined by the sum of all the green times given to the conflicting streams and the total time lost of the signal:
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The corresponding probability of a red time to be a certain value 
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Numerical example
In the following of the section the vehicle actuated control is modeled with the probabilistic approach in a simple case of two traffic streams crossing an intersection as the simple scheme in Figure 3 displays.
[Figure 3]

Let 
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. Let assume the arrival rate distributed as Poisson and let the process have a stationary arrival rate for a period of 30 minutes.
[Figure 4]

Using the model proposed in this paper one can compute at each time step the probability distribution of green times and the eventual overflow queue in time. Expected green times and overflow queues have been computed for each couple 
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, each ranging from a value from 0.1 to 0.6 of the saturation flow. Therefore the model is applicable also to oversaturated conditions. Figure 4 shows the expectation value as function of the couple 
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 at the end of the period of stationary conditions.
[Figure 5]

The expectation value is the minimum (or guaranteed) green time only when both flows are zero. The green time is sensitive to both the increase of each flow stream, but it has a steeper increase if increasing 
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 of one unit. The expected value is equal to the maximum green time for a large overall demand. 
Overflow queues are more likely to occur in these conditions, as figure 5 shows, while its value is nearly zero for low values of the demand, especially if 
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 is small. When one of the two streams has a very large demand the overflow queue is likely to reach the maximum value assumed in the example (70 vehicles) within the total period of analysis.
[Figure 6]

The overflow queue in conditions of moderate saturation starts assuming a strong dynamic character. Figure 6 shows the example of 
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It should be pointed out that the sequence of arrival probabilities has been chosen stationary for illustrative reason. The probabilistic model accepts any probability distribution as input
, also non-stationary.
5. Comparison with microsimulation

To test the correctness of the model presented in this paper we compare its results with a commercial microsimulation software package, VISSIM (PTV, 2003). A simple intersection has been simulated in the program similarly to the simple schematization drawn in Figure 3. To reserve sufficient space for eventual overflow queues to grow a buffer of 2 kilometers was reserved upstream the signal control. Both sections are single lane and only passenger car traffic was loaded, in order to resemble as close as possible the assumptions of the model developed and presented numerically with the example in Section 4.
The program has been run 100 times for a given combination for the demand 
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with different random seeds in order to obtain a statistically valid representation of the variability of traffic. The simulation program has the option to load the input demand using a Poisson distribution according to the model presented. It has to be pointed out that while the input demand in the system can be controlled, the arrivals at the intersection should not be distributed anymore as Poisson, since car-following processes modify this distribution when vehicles drive onto the network.

Service rates are, in the microscopic program, variable and, a priori, unknown (due to e.g. acceleration/deceleration effects and reaction times). In the probabilistic model they are assumed fixed and known. Therefore, an average service rate has been calculated from a first simulation with a total demand condition below the saturation flow of the intersection. Assumed initially that the saturation flow of the intersection would be at least 1800 veh/h, a demand of 1600 veh/h was loaded for one hour of simulation time. The demand was split respectively to 1000 veh/h and 600 veh/h to the two streams.
A vehicle actuated control program was developed at the Delft University of Technology and implemented in VISSIM, TRAFCOD (Furth, 1999). This program follows the same control criteria explained in Section 3. Minimum guaranteed green times have been fixed to 6 seconds while maximum green time extensions have been computed according to the equi-saturation criterion.

Figure 7 shows the number of vehicles served within a cycle in relationship with the sum of green and amber time needed to serve this number of vehicles.
[Figure 7]

The spreading of points is the result of the random service times simulated in VISSIM. It looks that a linear relationship represents well the relationship between number of vehicles and total discharge time. Therefore a constant service rate for each vehicle seems a reasonable assumption in the model presented in Section 4.

Based on these results an average service rate was estimated for a sequence of green and amber. This average value was found to be 0.52 seconds per vehicle, which can represent a saturation flow of around 1900 veh/h.

Figure 8 gives an idea of the variability of green times, which can be observed with the same average demand condition, due to the variability of the arrivals.

[Figure 8]

Comparison of the model calibrated on this scenario using only the above average service rate and the same parameters set in TRAFCOD is satisfactorily in these low demand conditions. Both expected green times and standard deviation for the two intersections were found very close to the microsimulation results, as it is shown in Table 1. Each cell in the table shows the expected green time computed with the microsimulation program and the probabilistic model (top), and it shows the standard deviation of green times (bottom). The first scenario was used to calibrate the model.
This result has been used to test the prediction capability of the probabilistic approach under a different demand condition. A large demand condition, close to the total capacity of the intersection, was simulated. A total demand of 1800 veh/h was loaded split respectively into 1000 veh/h and 800 veh/h among the two flow streams.
The probabilistic model was found to have again very similar results in terms of expected green times, as it is shown in Table 1, Scenario 2. To give a visual example of the similarity of the results between the microscopic program and the probabilistic model the cumulative distribution of green times was compared in Figure 9.
[Figure 9]

The probabilistic model presented has in conclusion very similar results if compared to a microsimulation program. However, the model has very small computation times (a few seconds) while the microscopic program needed at least 10 hours of computations to generate each scenario.

6. Conclusions
This paper has presented a new analytical approach to calculate the variability of traffic at vehicle actuated signals. This model assumes a known distribution of the arrivals at intersections, or approximated by a known probability distribution function (e.g. Poisson), and deterministic service rate, expressed in number of seconds that each vehicle needs to be served. The presented model gives various contributions to e.g. design and planning problems, or travel time predictions: 

· It shows that travel times at all approaches of vehicle actuated signals are interdependent, which means that models, which consider these travel times independent cannot predict well the traffic at such points;

· It gives an estimate of the expectation value of queue lengths during the various signal phases, and also of green and red times;

· By considering the probability of overflow queue to occur also in undersaturated conditions, it better catches the time dependency of signal settings to the dynamics of these queues;

· It gives an estimate also of the variability of queues and signal settings by computing the evolution of the probability distribution of these variables from the variability of the arrivals;

· It predicts these variables as well as a microscopic simulation program, which however involves far more parameters and criteria, and incomparable computation times.
Future research will compare this model under oversaturated conditions and with non-stationary demand conditions to test the validity of the model in catching the temporal dynamics of congestion.  Moreover, the effect of traffic heterogeneity and of variable service rates should be further investigated.
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Table 1
	
	VISSIM
	Probabilistic Model

	Scenario 1

1000 - 600 veh/h
	19.54 / 13.87
7.52 / 5.46
	18.84 / 13.23
7.95 / 5.4

	Scenario 2

1000 - 800 veh/h
	21.89 / 18.52

8.06 / 7.26
	21.5 / 18.7

8.16 / 7.03
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� Delay is usually defined as the difference between the travel time experienced by a vehicle passing an intersection and the travel time experienced if the vehicle passes the intersection at cruise speed.


� Dominant conflict group is the sequence of conflicting streams, which require the largest cycle time


� also empirical, which means it may be applied in hybrid data driven-model based travel time predictions (Lint 2004)
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