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Abstract: At present, speed ranges for Level of Service (LOS) are not well defined for highly heterogeneous traffic flow on urban streets in developing countries. In this respect, a study was carried out in the city of Mumbai, India by the authors. The study uses average travel speed on segments as measure of effectiveness, which in this case has been derived from second by second speed data collected using Global Positioning System (GPS) receiver fitted on a mobile vehicle. Applied technique, Hierarchical Agglomerative Clustering (HAC) is a way to investigate grouping in data by creating a cluster tree called dendogram and cutting it at the desired level, and then each connected component forms a cluster. Hence the possibility of obtaining new LOS criteria emerges. Applying this methodology it is found that urban street speed-ranges for LOS valid for Indian conditions are different from the corresponding values specified in HCM (2000). It is proposed that the present work of quantitative method of measuring LOS can further be extended to other methods like k-means clustering and fuzzy c-means clustering 
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Introduction 

Level of service (LOS) in the Highway Capacity Manual (HCM 2000) is defined as ‘‘a quality measure describing operational conditions within a traffic stream, generally in terms of such service measures as speed/travel time, freedom to maneuver, traffic interruptions, comfort and convenience.’’ The current HCM methodologies resulted from a combination of consulting studies, research and the discussions of Highway Capacity and Quality of Service committee (Pecheux et al. 2000).  The HCM designates six levels of service for each type of facility, from A to F, with LOS “A” representing the best operating conditions and LOS “F” the worst. It uses distinct values as boundaries for the various levels of service, each of which represents a range of operating conditions. However in HCM (2000) and Indian Road Congress (1990) guidelines have been given that on urban roads, the level of service is affected strongly by factors like the heterogeneity of traffic, speed regulations, frequency of intersections, presence of bus stops, on-street parking, roadside commercial activities, pedestrian volumes etc. For heterogeneous traffic condition in India, Marwah and Singh (2000) have attempted in providing a classification of level of service. Based on their simulation results of benchmark road and traffic composition the level of service are classified into four groups (LOS I-IV). In another study for heterogeneous traffic condition on urban roads Maitra et al. (1999) redefined the LOS boundaries by quantifying congestion as measure of effectiveness. Based on quantified congestion, LOS boundaries have been categorized into nine groups (A-I) in the stable zone and one LOS (J) for the unstable operation. Xu et al. (1999) developed a neural network model based on a taxi service situation observed in the urban area of Hong Kong. It was found that neural network-based macro taxi model obtained much more accurate information of taxi services than the simultaneous equations model. The neural network model thus obtained assists in decision making concerned with the restriction over the number of taxi licenses and the fixing of the taxi fare structure as well as a range of service quality control.  In a different kind of study Madanat et al. (1994) demonstrated the manner in which ordered probit model is applied to address an important transportation issue of users perceived LOS by finding threshold values for each categories. Cheol and Stephen (2002) used K-means, Fuzzy and SOM clustering in a real-time signalized intersection surveillance system in the determination of LOS. Further they have stated that availability of urban street LOS is of considerable value to operating agencies interested in transportation system evaluation. 
Lingra (1995) compared grouping of traffic pattern using the Hierarchical Agglomerative Clustering and the Kohonen Neural Network methods in classifying traffic patterns. It has been mentioned that the Kohonen neural network integrates the hierarchical grouping of complete patterns and the least-mean-square approach for classifying incomplete patterns. It is advantageous to use hierarchical grouping on a small subset of typical traffic patterns to determine the appropriate number of groups and change its parameters to reflect the changing traffic patterns. Such an approach is useful in using hour-to-hour and day-to-day traffic variations in addition to the monthly traffic-volume variation in classifying highway sections.  The same author, Lingra (2001) applied Hierarchical Agglomerative Clustering technique and an evolutionary Genetic Algorithms approach for classifying highway sections. It has been pointed out that hierarchical approach tends to move farther away from the optimal solution for smaller number of groups, however Genetic Algorithms based approach provides better results when the number of groups is relatively small.  Kim and Yamashita (2005) used K-means clustering algorithm to examine patterns of pedestrian involved crashes in Honolulu, Hawaii. They focused specifically on this non-hierarchical clustering to analyze spatial patterns of pedestrian crashes. 
Generally, average travel speed is used as measure of effectiveness for defining the LOS on Urban Street. The use of probe vehicles is the most commonly used technique for collecting travel time data. Accuracy with this technique varies from technician to technician. Recent research has demonstrated the feasibility of using GPS receiver in recording location as longitude-latitude, travel time and travel speed. However additional tools are required to provide a linear reference to these point locations. Fortunately, Geographical Information System (GIS) can be used for this purpose, with the added advantage that the resulting parameters can be entered directly into existing geographic database (Kennedy 2002). The new automated procedures provide consistency, automation, finer levels of resolution, and better accuracy in measuring these parameters than traditional techniques. As a result, large amounts of reliable travel time and speed data can be collected and processed. GPS receivers can record location and speed automatically at regular sampling periods. Consequently, only one technician is required in the vehicle to operate the equipment. 

The issue is how to determine the threshold values for partitioning different LOS categories. To provide reliable information, the threshold values should be decided such that speeds within the same category represent similar traffic conditions as much as possible. However, speeds in different LOS categories should also represent dissimilar traffic conditions. This paper presents a methodology for finding the criteria for level of service on urban street sections, relating the free flow speeds to street classes, and demonstrating the potential use of average travel speed as a measure of effectiveness for assessing the level of service. The average travel speed on segments, is derived from second by second speed data collected using Global Positioning System (GPS) receiver fitted on a mobile vehicle traveled on major corridors in the city of Mumbai, India. With the capability to obtain average travel speed by direct field measurement method using GPS fitted with mobile vehicle system, the possibility of obtaining new LOS criteria that can be used for urban street analysis emerges. Free-flow speed is defined as speed corresponding to flow that is less than 200 vehicles per lane per hour. The methodology for applying hierarchical agglomerative cluster analysis and validation parameter has been demonstrated by finding cohesiveness that lies among speed data points while fixing speed ranges for different LOS categories. Five major road corridors comprising of 100 street segments in Mumbai city, operating under mixed traffic are taken for this study.
The following section provides brief review of the cluster analysis, Hierarchical Agglomerative Clustering technique and its validation measure. The other three sections describe the study corridors and methods of data collection; analysis of the collected data and results along with the comparison of the recommended speed ranges for Indian condition to speed range recommended for LOS categories in HCM 2000; and summary and conclusions.

Cluster Analysis

Cluster analysis groups objects based on the information found in the data describing their relationships. The goal is that the objects in a group will be similar to one another and different from the objects in other groups. The center of a cluster is often referred to as centroid or medoid, the most “representative” point of a cluster. A good clustering method will produce clusters with the property that their intra-cluster distance is small and their inter-cluster distance is large. Since clusters are formally be seen as subset of the data set, one possible classification of clustering methods is according to whether the subsets are crisp (hard) or fuzzy. Hard clustering methods are based on classical set theory, and require that an object either does or does not belong to a cluster. Hierarchical Agglomerative Clustering (HAC) is a hard clustering method.
Hierarchical Agglomerative Clustering 
Three steps were followed to perform HAC on a data set using the statistics toolbox functions in MATLAB.
Step 1: Finding the Similarity between Objects

The distance function is used to calculate the distance between every pair of objects in a data set. For a data set made up of m objects, there are m (m-1)/2 pairs in the data set. The result of this computation is commonly known as a distance or dissimilarity matrix. There are many ways to calculate this distance information. By default, the distance function calculates distance for each pair of objects by the most popular distance function known as “Euclidean distance”. However, we can specify one of several other options like City block distance or Manhattan distance, Minkowski distance, Cosine distance, Correlation distance, Hamming distance, Jaccard distance.
Step 2: Defining the Links between Objects

Once the proximity between objects in the data set has been computed, we can determine which objects in the data set should be grouped together into clusters, using the linkage function. The linkage function takes the distance information generated by distance function and links pairs of objects that are close together into binary clusters (clusters made up of two objects). The linkage function then links these newly formed clusters to other objects to create bigger clusters until all the objects in the original data set are linked together in a hierarchical tree. There are many linkage options available like single linkage, complete linkage, average linkage, centroid linkage, ward linkage.   
Evaluating cluster formation
One way to measure the validity of the cluster formation generated by the linkage function is to compare it with the original proximity data generated by the distance function. If the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector. The cophenet function compares these two sets of values and computes their correlation, returning a value called the cophenetic correlation coefficient. The closer the value of the cophenetic correlation coefficient is to 1, the better the clustering solution.
The cophenetic correlation between Z and Y is defined as 
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Where Yij is the distance between objects i and j in Y
Zij is the distance between objects i & j in Z.

y and z are the average of Y and Z respectively.
Step 3:  Creating Clusters
Hierarchical tree of binary clusters is divided into larger clusters using the cluster function. The cluster function creates clusters by detecting natural groupings in the hierarchical tree called dendogram or by cutting off the hierarchical tree at a desired point as discussed in the following sections  
Finding the natural divisions in the data set

In the hierarchical cluster tree, the data set may naturally align itself into clusters. This is particularly evident in a dendrogram where groups of objects are densely packed in certain areas and not in others. The inconsistency coefficient of the links in the cluster tree identifies these points where the similarities between objects change. 
Specifying arbitrary clusters 

Instead of letting the cluster function create clusters determined by the natural divisions in the data set, we specify the number of clusters we want to create. In this case, the value of the cutoff argument specifies the point in the cluster hierarchy at which to create the clusters.
Validation measure
Cluster validity refers to the problem whether a given partition fits to the data at all. The clustering algorithm always tries to find the best for a fixed number of clusters and the parameterized cluster shapes. However this does not mean that even the best fit is meaningful at all. Either the number of clusters might be wrong or the cluster shapes might not correspond to the groups in the data, if the data can be grouped in a meaningful way at all (Bensaid et al. 1996; Bezdek and Pal 1998).  Silhouette is used in testing the cohesiveness lies among speed data points those falls under same category.
Silhouette
The graphical representation of each clustering is provided displaying the silhouettes introduced by Rousseeuw (1987). The entire clustering is displayed by plotting all silhouettes into a single diagram, allowing us to compare the quality of the clusters. The silhouette value summarizes how appropriate each object’s cluster is. Silhouettes are constructed in the following way: For each object i the silhouette value s (i) is defined and then these numbers are combined into a plot. Taking any object i of the data set and in order to define s (i), let it to be first denote by A the cluster to which this object has been assigned and then we calculate

a (i)= average dissimilarity of i to all other objects of A
This can only be done when A contains other objects apart from i, so at this point we assume that A is not a singleton. Now considering any cluster C different from A and defining

d(i,C) = average dissimilarity of i to all objects of C
After computing d(i,C) for all clusters C≠ A, we select the smallest of those: 
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The cluster B for which this minimum is attained [that is, d (i, B) = b (i)] is called the neighbor of object i. This is like the second-best choice for object i: If cluster A is discarded, cluster B is closer to i. It is to be noted that the construction of b (i) depends on the availability of clusters differing from A, which explains why silhouettes are not defined for k=1.

The number s(i) is obtained by combing a(i) and b(i) as follows:
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It is possible to write this in one formula:
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Indeed, from the preceding definition we easily see that

-1≤s(i)≤1






             
(5)
for each object i.                                                               

Having computed the quantities s (i) from the dissimilarities, we can now construct the graphical display. The silhouette of cluster A is a plot of the s (i), ranked in decreasing order, for all objects i in A. s(i) is represented by a row of asterisks, the length of which is proportional to s (i). Therefore, the silhouette shows which objects lie well within their cluster and which ones are merely somewhere in between clusters. A wide silhouette indicates large s (i) values and hence a pronounced cluster. The other dimension of a silhouette is its height, which simply equals the number of objects in A. In order to obtain an overview, the silhouettes of the different clusters are printed below each other.  In this way the entire clustering can be displayed by means of a single plot, which enables us to distinguish clear-cut clusters from weak ones. In addition to the detailed descriptions above the following summary values are added: 

The average of the s(i) for all objects i in a cluster, which is called the average silhouette width of that cluster.

The average of the s(i) for i=1,2,3,…….,n which is called the average silhouette width for the entire data set. 

The choice of optimal number of clusters (k) is one of the most difficult problems of cluster analysis, for which no unique solution exists. This last number (average silhouette width for the entire data set), which we denote by
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Where the maximum is taken over all k for which the silhouettes can be constructed, which means k=2, 3, 4…, n-1. On the one hand, this gives us a selected value of k. On the other, the SC is a useful measure of the amount of clustering structure that has been discovered by the classification algorithm. The silhouette coefficient is a dimensionless quantity which is at most equal to 1.  Indeed, an SC close to 1 point to a very clear structure and a low SC indicates that one might better apply an alternative method of data analysis. Subjective interpretation of the Silhouette Coefficient (SC) was summarized by Kaufman and Rousseeuw (1990) as presented below. 

SC

Proposed Interpretation

0.71 to 1.00
a strong structure has been found.

0.51 to 0.70
a reasonable structure has been found.

0.26 to 0.50
the structure is weak and could be artificial. 

-1 to 0.25
no substantial structure has been found.

The main usefulness of silhouettes lies in the interpretation and validation of cluster analysis results. Often silhouettes prevent us from drawing the wrong conclusions. 

Study Corridors and Data Collection
Base Map preparation

The GIS layers of the study area for present analysis are obtained from a commercial source and were further enhanced in this study. A detailed road inventory survey was also carried out for preparing the digitized GIS base map of the road network. 
Study Corridors

Five important urban road corridors of the city of Mumbai of Maharastra State, India are selected for the present study. Grater Mumbai is an Island city with a linear pattern of transport network having predominant North-South commuter movements. Passengers move towards south for work trip in the morning hours and return back towards north in the evening hours. Hence four north-south corridors and one east-west corridor comprising of 100 road segments have been chosen for the present study. Major roads like Eastern express highway extending up to south (Corridor-1), LBS Road extending up to south via Ambedkar road (Corridor-2), Western express highway extending up to marine drive (Corridor-3), SV road extending up to south via Veer Savarkar road (Corridor-4) and Versova- Andheri- Ghatkopar- Vashi (VAGV) (Corridor-5) are included. These are shown on the GIS base map in Fig. 1.

Data Collection
The probe vehicle used in this research work was mid-sized car. This vehicle was fitted with Trimble Geo-XT GPS receiver, capable of logging speed data continuously (at time intervals of one second). The GPS data provides both spatial and time/distance based data from which various traffic parameters were derived, including travel time and travel speeds (instantaneous and average). In order to get unbiased data sets we used three mid-sized cars and took the help of three drivers on different days of the survey work. Basically three types of data sets were collected. The first type is roadway inventory details, for which a data dictionary was prepared using Pathfinder office 3.0. The Performa for the collection of roadway inventory details is shown in Fig.2.  During the collection of inventory details proper segmentation technique was applied, which is after signal to after signal. Segment details like segment number, number of lanes, median types, pedestrian activity, road side development, access density, construction activity, speed limit, separate right turn lane, number of flyovers, date and day of data collection and segment length were collected. From the inventory data, it was found that maximum urban street segments are four lanes dived by mountable type concrete medians.  On street parking of vehicles, pedestrian activities coupled with commercial activity of vendors are affecting the smooth movement of the vehicles considerably. Inadequate road infrastructure with lack of enforcement in traffic rule and regulations are bringing traffic into a chaotic condition during peak hours on these corridors. 
The second type of survey conducted was to find the free flow speed. Before going for the free flow speed data collection, we should know when the traffic volume is less than or equal to 200 vehicles per lane per hour. A detailed 24 hour traffic volume count survey was conducted by this group for Western Freeway Sea- Link (WFSL) project in the month of April 2005.The traffic volume data were collected on 45 stations on seven screen lines. From this survey data, traffic volume per lane per hour was calculated for roads comings under this study area. It was found that free flow traffic condition (less than 200veh/ln/hr) is approaching at 12 mid-night and all road sections are having free flow traffic conditions from 1 AM to 5 AM. Hence free flow speed for all these corridors were collected using GPS palmtop fitted in a probe vehicle during these hours. The third type of data colleted was congested travel speed. Congested travel speed survey was conducted during both peak and off-peak hours on both directions of all corridors. Number of trips covered for each direction of travel and for the study hours (peak, off-peak and free-flow) is at least 3 and sometimes it is up to six trips. After data has been collected in the field, it has been transferred back to the office computer by using Pathfinder office version 3.00. Accuracy of field data were significantly improved through a process called differential correction. This requires a set of base files those are collected at a known location at the same time that field data (rover) files are collected. For this study, we collected the base files from remote sensing division, department of civil engineering, IIT Bombay. Data were visually checked before exported to a GIS or spatial database. This was to confirm that all the expected data were there, and was looked for any unwanted positions. Further, GPS data were incorporated into a GIS based transportation software called TransCAD.
Results and Analysis 

Average travel speed was calculated direction-wise on each segment. Hierarchical Agglomerative Cluster analysis was applied in two stages. First on average free flow speed on all segments and corresponding range of free-flow speed were found for each urban street class. Second on congested average travel speed on each segment for both peak and off-peak hours and corresponding speed ranges were found for LOS categories. While applying Hierarchical Agglomerative Clustering method on speed data “Euclidian distance” was used as the measuring distance among speed values. Various linkage types were tested through the statistical measuring parameter Cophenetic Coefficient (CC) to find out the best linkage type whose value approaches to one.  Cophnetic Coefficient values for various linkage types are shown in Table 1 and “Average linkage” type was selected because of maximum CC value among all. Hierarchical tree of binary clusters is divided into larger clusters using the cluster function. For an example, the dendogram formed out of free flow speed data was cut off at a level where it formed five clusters is shown in Fig. 3. In this figure the free flow speed corresponding to leaf node “2” (on the horizontal axis) is considered as an outlier point, hence in actuality four clusters are formed whose speed ranges  are used in urban street classification. In this figure horizontal data vector having length 30 contains the leaf node number for each object in the original data set (When there are more than 30 initial nodes, a dendrogram may look crowded). Hence some leaf nodes in the display correspond to multiple objects. 
The heuristic reasoning is that the silhouettes should look best for a “natural” number of cluster k. Hence, silhouette is used as the validation measure in finding optimal number of clusters and degree of cohesiveness that exist in inter-cluster and intra-cluster data points. One way to choose k appropriately is to select that value of k for which silhouette coefficient is as large as possible. At the same time it is considered that partitions with lesser clusters are better, when the differences between the values of validation measures are minor as number of cluster increases. While finding optimal number of clusters using silhouette coefficients as shown in Fig.4. , it turns out that the best choice is when number of clusters is 5.  The silhouette coefficient equals 0.527 at this cluster number five and according to our previous discussion, it is interpreted that a reasonable good structure has been exist while clustering the free-flow speed data points to find urban street classes. One should never merely accept a high overall average silhouette width as its face value, but also look at the graphical output itself to find out what caused the large value. In order to look into degree of cohesiveness that lies within urban street classes, silhouettes were plotted for each free-flow speed.  In Fig. 5 (A) and 5(B) for three and four urban street classes it is found that urban street class II is not well classified in both cases because they contains number of negative silhouette values. Comparing Fig. 5(C) and 5(D) it is interpreted that best cluster partition lies when urban street is classified into five classes which is further justified by Fig. 4. In conclusion, the silhouette plots tell us that a partition into k=5 clusters is probably most natural. But out of five classes one is considered as an outlier because in this group only a single free flow speed data point lies. Depending on the subject matter and task at hand, we wanted to put the outlier aside for further investigation and classified urban street into four classes. 
As in HCM (2000), further justified by optimal clustering criteria it has been attempted to categorize the urban streets into four classes based on free flow speed, functional and geometric characteristics for the present context. Urban Street classifications using free flow speed thus obtained in the present context, is shown in Fig.6. Level of service of urban street classes (I-IV) using average travel speed on segments as obtained for Indian conditions is shown in Fig. 7. These results are also shown in Table 2. From these two previous figures discussed it is interpreted that more are data points (speed values) better is the process to classify it, which is the limitation of the present study. Fig.8. shows Silhouette Values for Urban street classes. It was found that average Silhouette width lie between 0.35 and 0.75 for all street classes. This indicates that reasonable classifications have been found. It can be inferred from Fig. 9 and Table 3. that reasonable good travel speed boundaries have been found for each LOS categories. Looking at this figure it is interpreted that vehicles move at congested level of service of “D”, “E” and “F” on all street classes (I-IV) for most of the time period as silhouette heights are more. And vehicles flow at lesser congested conditions of level of service “A”, “B” and “C” at lesser time period as silhouette heights are lesser. 
Summary and Conclusion 

In this study an attempt has been made in developing methodologies to find level of service (LOS) criteria for urban streets in the context of Indian cities. GPS was used to collect the data sets and GIS was used in managing the data sets. Important factors affecting in classification of urban street class and level of service are enumerated. A new methodology and computation steps using Hierarchical Agglomerative Clustering analysis is described for the determination of urban street LOS criteria. Following the classifications adopted in HCM (2000) and satisfying to local conditions, the urban streets in the present context are grouped into four classes and free-flow speed ranges were found for each street class. Secondly, cluster analysis is again applied on both peak and off-peak traffic speed and different ranges of speed were found for each level of service by above mentioned method. The limitation of this study is that we need large number of speed data points in order to get better result of classifications. As of now a standard Highway Capacity Manual is not available in India and it is found that urban street speed-ranges valid for Indian conditions are different from the corresponding values specified in HCM (2000). These differences are due to the heterogeneous nature of traffic flow along with varying geometry.  From the result it is found that percentage of free flow speed for level of services “A”, “B” and “C” are comparatively higher as mentioned in HCM 2000. But these comfortable conditions are seldom seen on the study corridors.  The probe vehicle moves at level of service of “D”, “E” and “F” for most of the time period.
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Table 1. Cophenetic Coefficient (CC) Values of Various Linkage Types 

	Linkage Type
	Meaning of  Distance Type
	CC Value

	Single
	Shortest distance
	0.7431

	complete
	Furthest distance
	0.6019

	centroid
	Centroid distance
	0.7681

	median
	Weighted center of mass distance
	0.6583

	Average
	Unweighted average distance
(also known as group average)
	0.7681

	ward
	Inner squared distance
(minimum variance algorithm)
	0.6346


Table 2. Urban Street Speed Ranges for different LOS Proposed for Indian Conditions using Hierarchical Agglomerative Clustering 

	Urban Street Class
	I
	II
	III
	I

	Range of Free Flow Speed (FFS)
	68 to 85 km/h
	54 to 68 km/h
	38 to 54 km/h
	25 to 38 km/h

	Typical FFS
	75km/h
	60km/h
	50km/h
	35 km/h

	LOS
	Average Travel Speed (Km/h)

	A
	>69
	>58
	>49
	>30

	B
	>59-69
	>50-58
	>40-49
	>23-33

	C
	>48-59
	>40-50
	>34-40
	>18-23

	D
	>37-48
	>30-40
	>23-34
	>14-18

	E
	>29-37
	>19-30
	>11-23
	>9-14

	F
	≤29
	≤19
	≤11
	≤9


Table 3. Silhouette Value for Urban Street Classes (IV) and their LOS Categories using Hierarchical Agglomerative Clustering

	
	Urban Street Class

	
	I
	II
	III
	IV

	          Average                     Silhouette

               Width 

Level

of Service
	0.366
	0.568
	0.498
	0.711

	A
	0.724
	0.444
	0.707
	0.723

	B
	0.557
	0.722
	0.578
	0.623

	C
	0.741
	0.651
	0.734
	0.469

	D
	0.399
	0.513
	0.444
	0.710

	E
	0.759
	0.530
	0.403
	0.459

	F
	0.423
	0.617
	0.759
	0.723

	Silhouette Coefficient
	0.538
	0.559
	0.514
	0.590
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Fig.1. Map Showing Selected Corridors of Greater Mumbai
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Fig. 2. Performa for Roadway Inventory Data Collection Prepared in Pathfinder Office 3.0
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Fig. 3. Dendogram Using Hierarchical Agglomerative Clustering on Free Flow Speeds
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Fig. 4. Silhouette Coefficient for finding Optimal Clusters used in Urban Street Classification
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Fig. 6. Urban Street Classification using Hierarchical Agglomerative Clustering on Free Flow Speeds (Values on X and Y axes are the same, in order to obtain the clusters in a straight line, while distinguishable from each other)
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Fig. 8. Silhouette Values of Urban Street Classes (I-IV) based on Hierarchical Agglomerative Clustering
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A: LOS of Urban Street Class I





B: LOS of Urban Street Class II
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Fig. 7. Level of Service of Urban Street Classes (I-IV) using Hierarchical Agglomerative Clustering on Average Travel Speeds 





C: LOS of Urban Street Class III








D: LOS of Urban Street Class IV
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Fig. 9. Silhouette Values for LOS Categories of Urban Street Classes (I-IV) based on Hierarchical Agglomerative Clustering








D: Silhouette Values for LOS Categories of Urban Street Class IV








C: Silhouette Values for LOS Categories of Urban Street Class III








B: Silhouette Values for LOS Categories of Urban Street Class II








A: Silhouette Values for LOS Categories of Urban Street Class I
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C: Silhouette Values for Five Urban Street Classes








D: Silhouette Values for Six Urban Street Classes





A: Silhouette Values for Three Urban Street Classes 





B: Silhouette Values for Four Urban Street Classes





Fig. 5. Silhouette Values used in Urban Street Classification using Hierarchical Agglomerative Clustering
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