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Abstract:

Among all forms of traveler information, travel time is regarded as the most critical since it can empower drivers to make more informed decisions and potentially improve the performance of the entire system. Numerous studies have been conducted for predicting travel times based on measured data, mostly from loop detectors. This paper focuses on evaluating the performance of a set of “benchmark” methods designed to utilize loop data to provide route travel times for display on CMS (Changeable Message Signs). The study reveals that (1) although the “ground-truth” travel time (e.g., those obtained from probe vehicles) at a given time instant is often considered as a single value, it may be more appropriately represented as an interval to reflect the travel time variation due to different driving aggressiveness; (2) lane-by-lane loop detector data may be better utilized to improve travel time estimation, and (3) the performances of loop travel times vary dramatically during different time-of-day (TOD), and (4) as detector spacing increases, the accuracy of travel time estimation decreases, while its variation increases significantly.
1. Introduction

As more and more technologies are deployed in the transportation system, the driving public demands accurate and reliable travel related information. Among all forms of traveler information, travel time is regarded as one of the most critical since it can empower drivers to make more informed decisions and potentially improve the performance of the entire transportation system. Recently, Federal Highway Administration (FHWA) has recommended that “no new Changeable Message Signs (CMS) should be installed in a major metropolitan area or along a heavily traveled route unless the operating agency and the jurisdiction have the capability to display travel time messages.” Various studies have been conducted in the literature for estimating travel times based on measured data, mostly from loop detectors. In this paper, we focus on travel time estimation methods that are suitable for real time traffic applications, e.g., the CMS travel time system.    

Despite the extensive research efforts on developing travel time estimation approaches, only a few studies have been devoted specifically for evaluating the overall performances of real time travel time estimation methods, although most studies on devising new travel time methods did provide certain discussions on the performance of their proposed methods. Lindveld et al. (7) is one of the studies focusing on evaluating performances of several travel time estimation methods using loop detector data. The estimated travel times were compared with “ground truth” travel times obtained from probe vehicles. Aggregated accuracy measures, such as MSE (mean square error) and RMSEP (root mean square error proportional), were adopted for the performance comparison and evaluation. Zhang et al. (1999) studied travel time estimation methods based on single loop detector data. Floating car runs were conducted to gather the ground truth travel times. As pointed out in Kwon et al. (2006), however, limited floating car runs may not be able to produce accurate enough ground truth travel times.
Most previous travel time evaluations were based on “baseline” scenarios, i.e., all detector data was used as input to the travel time model. However, often times, practitioners need to know the best detector spacing configuration that can result in proper travel time estimation in a cost-effective manner. For this purpose, exploring the relationship between detector spacing and travel time estimation quality becomes crucial. Fujito et al. (2006) investigated how detector spacing impacts the performance of travel time methods. This was achieved by increasing detector spacing via removing detectors in a controlled manner so that the remaining detectors are roughly evenly spaced. Travel time index was used as the performance measure and they found that both spacing and locations of detectors have significant impacts on travel time performances. Kwon et al. (2006) studied the performance of travel time methods with respect to detector spacing by randomly taking out detectors. They concluded that 0.5 mile is the ideal detector spacing in order for the relative error of travel time estimation being less than 10%. Both Fujito et al. (2006) and Kwon et al. (2006), however, used travel times computed from the “baseline” detector spacing as the ground truth travel time. As shown in this paper, this may be very different from the actual experienced travel times from probe vehicles.
In this paper, we evaluate three travel time estimation methods that are popularly used in real time traffic applications: the instantaneous, dynamic and linear-regression travel times (Rice and Zwet, 2001). The data source to be evaluated is the double loop detectors and both average and lane-by-lane speeds are used to compute the average and lane-specific travel times. The travel time estimates are compared with ground truth travel times, obtained from FasTrak in the San Francisco Bay Area. Due the large amount of data samples, the FasTrak travel time is expected to provide more accurate representation of the ground truth travel times than floating car runs. The evaluation is conducted for different traffic conditions and detector spacing. Particularly for the detector spacing evaluation, a random detector selection process is presented in this paper by combing the method in Fujito et al. (2006) and Kwon et al. (2006).
Numerical experiments provided in this paper show that (1) although the “ground-truth” travel time at a given time instant is often considered as a single value, it may be more appropriately represented as an interval to reflect travel time variations due to different driving aggressiveness; (2) lane-by-lane loop detector data may be better utilized to improve travel time estimation, and (3) the performances of loop travel times vary dramatically during different time-of-day (TOD), and (4) as detector spacing increases, the accuracy of travel time estimation decreases, while its variation increases significantly.
This paper is organized as follows. The data processing of ground truth travel times is presented in Section 2. This section also proposes two ways to represent the ground truth travel time: 1) as a single representative value, and 2) as an interval. Section 3 briefly describes the three travel time methods evaluated in this paper. In Section 4, two types of performance measures are defined depending on how the ground truth travel times are represented. Section 5 presents the evaluation results using one route in Interstate 80 in the Bay Area, followed by concluding remarks and future study directions in Section 6. 
2. Ground Truth Travel Times from Probe Vehicles

The “Ground truth” travel time data in this paper was obtained from probe vehicles, i.e., FasTrak data in the San Francisco Bay Area. FasTrak is used statewide in California to automatically collect road and bridge tolls. FasTrak readers are currently installed at each toll booth, as well as along the road side in a spacing of 5 to 10 miles. FasTrak data contains individual vehicle travel times between two consecutive readers and is rich information from which accurate and reliable travel times can be obtained
. The raw FasTrak data, however, needs to be processed to remove outliers. Outliers include those vehicles that took excessively long time to travel the route, possibly because they left and re-entered the freeway at some point. Vehicles that used the HOV lane are also treated as outliers, as we are interested in predicting travel time for those in the general lanes.
2.1. Probe-Vehicle Data Processing

Figure 1 depicts the raw FasTrak travel time data for a route from Albany to Carquinez Bridge along I-80 EB (see Section 5.1 for more detailed descriptions of the route). The time-dependent pattern of the travel time is obvious in Figure 1, but the raw data contains a significant amount of outliers.

To remove outliers, we applied the Median Absolute Deviation (MAD) method. MAD is a statistical measure for capturing the variation of a given set of data points. Assume 
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. In practice, MAD in (1) is less impacted by outliers in the data set since extreme points have less influence on the calculation of the median than they do on the mean.

To detect whether xi is an outlier, a z-score needs to be computed for each data point:
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Then if 
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(INSERT FIGURE 1 HERE)
(INSERT FIGURE 2 HERE)

Since the raw FasTrak data in Figure 1 has a clear time-dependent pattern, we divided the entire time window to time “bands” and applied the MAD method locally to each band. The default length of a band is set as 5 minutes, but the length is expansible so that each band contains at least 25 data points. This is to make the processing statistically meaningful. 
Figure 2 shows the processed FasTrak data, which we refer as “ground truth” travel times thereafter in this paper. It clearly illustrates that the ground truth travel time at any given time instant for a route falls in a range. This is in contrast to many previous studies which assumed the truth travel time at a given time instant is a single value. Here it is also worthwhile to differentiate the travel time variations in Figure 2 with those studied in travel time reliability (Chen et al., 2003). In travel time reliability studies, travel time variations across different days are considered, whereas for a particular day, the travel time (at a given time instant) is often treated as deterministic. Therefore, travel time variations in these studies mainly reflect traffic condition changes across different days
. In Figure 2, whereas, the variations (at a given time instant) are mainly due to varied driving behaviors (i.e., aggressiveness) of individual drivers, not changes of traffic conditions.
2.2 Representation of Ground-Truth Travel Times

The travel time variation for a given instant in Figure 2 imposes difficulty on how to properly represent the ground-truth travel time. Traditionally, one may want to use a single “representative” value. Due to travel time variations, this may be the average or median travel time at a given time instant. However, it seems more reasonable to represent the true travel time at a given time instant as an interval, aiming to capture the travel time variation at that instant. For this purpose, we use the interval of 15th and 85th percentile travel times to represent the ground truth travel time. Figure 3 below illustrates the 15th, median (50th), and 85th percentile travel times for the processed FasTrak data in Figure 2. As will be discussed in Section 4, the ways in which ground truth travel times are represented will determine the definitions of travel time performance measures.
(INSERT FIGURE 3 HERE)
The percentile travel times in Figure 3 were obtained via the method of local linear fit, originally proposed by Koenker and Bassett (1978). This method was later successfully applied by Small et al. (2005) to process travel times computed from loop data.
Several observations follow Figure 2 and 3. Firstly, the most congested period for this route is PM peak hours (15:00 – 19:00) during which the time-dependent “trend” of travel times is evident. For example, the median travel time increases from free-flow (around 900 seconds) to almost 2200 seconds from 15:00 to 17:00 and then decreases to about 900 seconds after 19:00. For the other periods of the day, travel times are fairly stable, i.e., no obvious trend is observed. Secondly, for the congested period (i.e., PM peak hours), the travel time variation at a given instant is small, while it is much larger during non-congested periods. The second observation coincides with previous studies and can be easily explained by different driving behaviors at congested and non-congested traffic conditions. That is, under non-congested periods, drivers have more freedom to stick to their preferred driving styles (aggressive or not). Therefore, the resulting travel times have more variations because of different driving behaviors of individuals. During congested periods, however, what drivers can do most of the times is to keep “flowing” with the congested traffic. Hence, their individual driving preferences may not be reflected at all, resulting in the nearly homogeneous travel times during the congested period.
3. Travel Time Computed from Loop Detector Data

For the studied route in this paper, double loop detectors were deployed. Therefore, we used 5-minute loop speeds to compute the estimated travel times. The data can be downloaded from PeMS (http://pems.eecs.berkeley.edu/) and no further data processing was conducted. In particular, we used the average and lane-by-lane loop speeds to compute the estimated average and lane-specific travel times.
We tested on three benchmark travel time estimation algorithms, the so-called instantaneous, dynamic, and linear-regression (LR) travel time methods. The instantaneous travel time assumes traffic conditions remain unchanged from the time when a vehicle enters a route until it leaves the route. Therefore, the travel time of the route can be computed by simply summing travel times of the constituent links at the time a vehicle enters the route. The dynamic route travel time is also a summation of travel times of its constituent links; however, the link travel time will be computed using the latest traffic condition at the time a vehicle enters a particular link. 
The LR method, on the other hand, combines (linearly) the instantaneous and dynamic travel times so that the historical trend of travel times for a given route can be considered to certain extent (Rice and Zwet, 2001; Chen et al., 2004). The LR method can be expressed using the following equation.
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Here 
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The parameters can be estimated via a linear regression model using historical data. In practice, t is discretized into five-minute intervals, i.e., we will have 288 parameters for an entire day.
Note that computing the instantaneous and LR travel times only requires real time speeds (the coefficients and average travel times used in the LR method can be estimated offline). Therefore, they are suitable for real time traffic applications, such as posting travel times on CMS. The dynamic travel time needs speeds in future times and thus can not be used in real time applications. However, we included the dynamic travel time method in our evaluation since it provides benchmark travel times that the other two methods can compare with.
4. Performance Measures

The performance measures defined in this section describe how close the estimated travel time at a given time instant is to the ground truth travel time
. As discussed in Section 2.2, the definitions of performance measures depend on how the ground-truth travel times are represented.
4.1 Performance Measure Based on Representative Ground Truth Travel Times
In this paper, we use the median of the processed FasTrak data as the representative ground truth travel times. First, since travel time is time-relevant, we denote 
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 as the representative travel time for a given route r for vehicles entering the first link of r at time t. Here t is the discrete time instant (e.g., in every five minutes). Similarly, 
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is the estimated travel time for the same route at time t. Then the absolute error is defined as:
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The absolute error defined in Equation (4) may not be a fair measure since for different reference times the same error may imply quite different performances. In this case, the relative error can be used that is defined as follows:
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Equations (4) and (5) define two accuracy measures for a particular time instant. They are thus referred as disaggregated measures. Often times, aggregating performance measures over a certain time period may be of more interest, especially from practitioners’ point of view. The typical periods of a day may include AM off peak, AM peak, mid-day, PM peak, and PM off peak (Fujito et al, 2006). For a given period p, the aggregated measures can be computed using the following two equations, corresponding to Equations (4) and (5), respectively:
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Here n is the total number of estimates within the period p.

4.2 Performance Measure Based on Interval Ground Truth Travel Times
As aforementioned, the ground truth travel time is itself a random variable, which makes it more logical to represent it as an interval. In this paper, we use the interval constructed by the 15th and 85th percentile FasTrak travel times. In particular, we define an “accuracy index” of the estimated travel time at time t is 1 if it lies in this interval; otherwise, it is zero. In other words,
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Here 
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According to the definition in (8), the accuracy index at a single time instant is a binary value (0 or 1). This definition can be extended to a time period, e.g., AM or PM peak hours, as follows.
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where n is the number of time instants in the time period p. The accuracy index over a time period, as defined in (9), may be more practical than what is defined in (8) for a single time instant.

5. Numerical Studies
This section presents numerical experiments that illustrate performances of the three travel time methods in Section 3. We first provide a brief description of the evaluation route and data collected. As shown in Figure 4, a route along Interstate 80 EB from the City of Albany to the Carquinez Bridge was selected for evaluation. In this figure, the dark arrow and “star” indicate, respectively, the origin and destination of the route. The length of the route is about 15 miles with the free flow travel time around 15 minutes (900 seconds) at 60 mph. We further selected four weekdays in middle September of 2006 for the evaluation. There are 33 double loop detectors deployed approximately evenly in this route and most of them worked properly during the four evaluation days. As aforementioned, we used the average and lane-by-lane speeds to compute average and lane-specific travel times from loops in a 5-minute interval.
(INSERT FIGURE 4 HERE)

5.1 Evaluation Scenarios

Two types of scenarios are evaluated. First, we test the baseline configuration of detector spacing and investigate the performances at recurrent congestion. In this paper, we use time-of-day as a proxy of recurrent congestion. Hence, we compare the (disaggregated) performances of travel time methods at different times of a day. We also study the aggregated performances based on different periods of a day. Here we define the periods of a day as AM off peak (00:00 – 07:00), AM peak (07:00 – 10:00), mid-day (10:00 – 15:00), PM peak (15:00 – 19:00), and PM off peak (19:00 – 0:00).
In the second scenario, we vary detector spacing and investigate the impact of detector spacing on travel time estimation. The original detector spacing of the route is about 0.5 mile and one may take out one or multiple detectors to see how the performance changes at different detector spacing settings. This scheme has been applied by Kwon et al. (2006) and Fujito et al. (2006). However, detectors were removed in Kwon et al. (2006) purely randomly so that the remaining detectors may be distributed highly unevenly. As illustrated in Figure 5(a) and 5(b), although the average spacing is the same for these two settings (1.5 miles), one can expect that travel times estimated using these two settings may be very different. Fujito et al. (2006), on the other hand, took out detectors in such a way that the remaining detectors are distributed almost evenly. Hence, the method in Fujito et al. (2006) resulted in only a few detector deployment settings for a given number of remaining detectors (i.e., the same average detector spacing) so that the variation of performances (for the same average detector spacing) may not be easily captured.
(INSERT FIGURES 5(a), 5(b) HERE)
In this paper, we applied a method by combining the above two. That is, we randomly took out a given number of detectors, but in such a way that the remaining detector spacing satisfies the following condition:
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Here 
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We implemented the above method as a random selection algorithm. For the route shown in Figure 4, we took out detectors in such a way that the remaining numbers of detectors are 20, 15, 10, 8, 6, 5, and 3, which are corresponding to the average detector spacing of 0.75mile, 1 mile, 1.5miles, 2 miles, 2.5 miles, 3 miles, and 5 miles, respectively. For each of the above seven scenarios, we ran the random selection algorithm for multiple times so that 100 distinct detector settings were obtained. These detector settings are used in Section 5.4 to evaluate the performances of travel time methods under different detector spacing configurations.
5.3 Performance of Baseline Scenario
The baseline configuration is what is currently deployed on the evaluation route.  The spacing between adjacent loop detectors is approximately 0.5 mile. We are interested in evaluating the performances of the three travel time estimation methods at different times of day (i.e. when the freeway is in free-flow condition, as well as during recurring congestion). Furthermore, because there are loop detectors in each lane, we compute the lane-by-lane travel times, and compare the resulting performances. 

The estimated travel times using three methods for the evaluation route on September 6, 2006 are shown in three figures: Figure 6(a) for using instantaneous travel times, Figure 6(b) for using dynamic travel times, and Figure 6(c) for using linear-regression travel times. In each figure, estimated travel times using data on individual lanes are shown in different broken lines. Most part of the evaluation route has four lanes. Lane 1 is the left-most lane, and during peak hours only high-occupancy vehicles are allowed in this lane. Lane 2 is the second from the left, and lane 3 is the third from the left.  The line labeled as “Avg.” resulted from using data across all lanes. For comparison purposes, the ground-truth travel times are also plotted using solid lines, each representing a different percentile.

It turns out that for the evaluation route, different estimation methods do not make much of a difference in results, under both the free-flow and the recurring-congestion conditions.  Theoretically, dynamic travel times should be superior to instantaneous travel times, when congestion forms or dissipates rapidly. However, because the route travel time is relatively short (15 minutes under free-flow condition, and 35 minutes when most congested), and the transition from free-flow to maximum congestion is slow (taking almost 2 hours), the results using different estimation methods are not significant. This suggests that under similar circumstances, using instantaneous travel time is simple and sufficient.
(INSERT FIGURE 6(a), 6(b), 6(c) HERE)

Our second observation is that, data from different lanes affects estimated travel time greatly. Since all three estimation methods yield similar results, we focus on Figure 6(b) for simplicity.  

During the free-flow period, travel time calculated using Lane 1 data is closest to the 15% ground-truth line; travel time estimated with Lane 2 data is closest to the 50% ground-truth line; and the travel time using Lane 3 data is often longer than the ground-truth (except during 0-7am). This is plausible since the speed in the right lane is lower than others, and travelers going through the whole route (who are the most-relevant users of the travel-time display) tend to stay in left lanes, except during 0-7am, when a large percentage of through traffic are trucks, and they stay in right lanes more often than cars. Travel time estimated with data from all lanes (i.e., the average speed) is closest to the 85% ground truth in general. If we are mostly interested in displaying the travel time estimated for an “average” driver (or more precisely, a driver with median aggressiveness and speed), using data from Lane 2 is a better choice than using data for other lanes or for all lanes (for free-flow periods). 

During the recurring-congestion period, the ground-truth travel times plotted should be interpreted a little differently. As explained in Section 2.1, we processed FasTrak data to eliminate “outliners”, which in this study effectively removed travel time from HOV vehicles. When we turn to the loop-detector data, it is not surprising that estimated Lane 1 travel times are significantly lower than the plotted ground-truth times, because the former is HOV travel times and the latter is for regular lanes.
When the freeway is mostly congested, travel times estimated with Lane 3 data are closest to the ground-truth lines. Ideally when the loop detectors are dense enough so that all bottlenecks are fully captured, Lane 2 data would yield the best result. However, when two non-desirables (Lane 3 not representative, and detectors not dense enough) cancels the effect of each other’s, adopting travel times calculated with Lane 3 data is recommended as they are closest to the ground-truth. Here we note that the above findings can be observed for the other three evaluation days.
The second observation can also be easily seen from Table 1 and 2, which show, respectively, the aggregated relative errors and accuracy indexes of dynamic travel times for the average and lane by lane speeds computed using equations (7) and (9). Note that while one prefers small relative errors in Table 1, larger values in Table 2 represents higher possibilities that the estimated travel times lie in the interval of ground truth travel times and thus are more desirable. 
(INSERT TABLE 1 HERE)

(INSERT TABLE 2 HERE)
5.3 Performance of Different Detector Spacing Configurations

To evaluate the performances of different detector spacing configurations, we only investigate the congested period of the route (i.e., the PM peak hours) since one may expect that detector spacing does not change much of the performance for non-congested periods when vehicles are in (nearly) free-flow. Our previous discussions showed that travel times estimated using lane-3 speeds are the closest to the ground truth travel times during PM peak hours. Therefore, we focus on lane-3 travel times in this section. The performance measure we use for this purpose is the aggregated relative error defined in equation (7) for PM peak hours.
We first show, for each of the four weekdays, the aggregated relative error vs. detector spacing, as depicted in the figures below. Since for each detector spacing scenario, we randomly generated 100 detector spacing configurations, we show in each figure the minimum, maximum, median, and 25th and and 75th percentile relative errors among these 100 configurations.

(INSERT FIGURE 7 HERE)
Two important observations thus follow. First, the median relative error increases approximately monotonically as detector spacing increases. This is intuitive since one can expect that as the distance between detectors increases, less information can be collected regarding the traffic condition, which will lead to less accurate travel time estimation. Second, as detector spacing increases, so does the variation of the relative errors. This can be seen more clearly in the following figures which show the difference of the 75th and 25th relative errors (i.e., the so-called inter-quantile of relative errors).
(INSERT FIGURE 8 HERE)
Although the first observation is well-known (Kwon et al., 2006; Fujito et al., 2006), the second one has not been well-recognized in previous studies
 and thus merits further discussions. From Section 5.2, the performance variation for each detector spacing scenario is obtained from 100 detector configurations, which were randomly generated in such a way that they are nearly evenly distributed.  Therefore, the large variation of performances for larger detector spacing seems imply that if detectors are sparser, the accuracy of travel time estimation becomes more sensitive to the actual locations of the detectors. When detector is dense, nevertheless, the actual locations of detectors do not matter too much. This finding is important to the study of optimal detector deployment strategies, which needs to consider not only spacing of detectors, but also actual detector locations especially when detectors are sparse.
6. Conclusion and Future Study

In this study, we analyzed FasTrak data that contains actual travel times between two points on a freeway for individual vehicles, and compared the performances of three typical travel time estimation methods that use speed data from loop detectors.  We find that when the route travel time is relatively short and the transition from free-flow to maximum congestion is slow, the results using different estimation methods are not significant, and the instantaneous travel time can be adopted for its simplicity. On the other hand, using speed data from different lanes makes significant difference. We recommend using middle-lane data during free-flow periods and right-lane data during recurring-congestion periods. For the evaluation route, using loop-detectors data tend to underestimate travel times during recurring congestion, possibly because loop detectors are not sufficiently dense to fully-capture all bottlenecks or 5-minute data was used in the study which was already smoothed out compared with raw 30-second data. Subsequently, we evaluated the performance of travel time estimates with different detector spacing. We found that the median relative error increases approximately monotonically as detector spacing increases. More importantly, if detectors are sparser, the accuracy of travel time estimation becomes more sensitive to the actual locations of the detectors.  This implies that when detectors cannot be densely deployed, more attention should be focused on detector locations, i.e., identification and characterization of the bottlenecks for better deployment of limited detectors.  

This paper proposed two intuitive ways to represent the ground truth travel times: as a single value or an interval. How to better represent the ground truth travel time obtained from probe vehicles will be a future research topic. The ideal method should capture both the trend of travel times and the variations. In addition, we only investigated travel times computed by using 5-minute loop detectors. The authors are currently evaluating performances of travel time methods using other types of data sources, such as 30-second loop data and speed radar sensors. Results in this regard will be presented in subsequent papers.
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Table 1 Relative Error of Dynamic Travel Times
	Period of the Day
	Avg.
	Lane 1
	Lane 2
	Lane 3

	AM Off Peak
	0.02
	0.14
	0.07
	0.03

	AM Peak
	0.11
	0.06
	0.06
	0.27

	Mid Day
	0.06
	0.07
	0.03
	0.40

	PM Peak
	0.15
	0.34
	0.12
	0.09

	PM Off Peak
	0.04
	0.06
	0.01
	0.11


Table 2 Accuracy Index of Dynamic Travel Times

	Period of the Day
	Avg.
	Lane 1
	Lane 2
	Lane 3

	AM Off Peak
	1
	0.1702
	1
	0.9574

	AM Peak
	0.5833
	0.6111
	0.7778
	0

	Mid Day
	0.9167
	0.65
	0.9833
	0

	PM Peak
	0.125
	0.0208
	0.1042
	0.2917

	PM Off Peak
	0.9388
	0.3878
	1
	0.1429


Figure 1 Raw FasTrak Data                                        

Figure 2 Processed FasTrak Data 

Figure 3 Percentile Travel Times

Figure 4 Evaluation Route and Loop Detectors (Source: http://pems.eecs.berkeley.edu/)

Figure 5(a) Evenly Spaced Detectors

Figure 5(b) Un-Evenly Spaced Detectors

Figure 6(a) Instantaneous Travel Times Vs. Ground-Truth Travel Times

Figure 6(b) Dynamic Travel Times Vs. Ground-Truth Travel Times

Figure 6(c) Linear-Regression Travel Times Vs. Ground-Truth Travel Times

Figure 7 Performance of Detector Spacing – Relative Error

Figure 8 Performance of Detector Spacing – Variation
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Figure 1 Raw FasTrak Data
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Figure 2 Processed FasTrak Data
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Figure 3 Percentile Travel Times
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Figure 4 Evaluation Route and Loop Detectors (Source: http://pems.eecs.berkeley.edu/)
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Figure 6(a) Instantaneous Travel Times Vs. Ground-Truth Travel Times
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Figure 6(b) Dynamic Travel Times Vs. Ground-Truth Travel Times
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Figure 6(c) Linear-Regression Travel Times Vs. Ground-Truth Travel Times
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[image: image42.emf]Relative Error vs. Detector Spacing
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[image: image44.emf]Inter-Quantile vs. Detector Spacing
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Figure 5(b) Unevenly Spaced Detectors





Figure 5(a) Evenly Spaced Detectors




















Figure 8 Performance of Detector Spacing – Variation





Figure 7 Performance of Detector Spacing – Relative Error








� Due to privacy concerns, the raw FasTrak data was discarded after travel time was obtained. Further, no investigation on individual vehicle’s trajectory is conducted in this paper.


� Depending on how the single-valued travel times within a day are computed, they may also reflect variations due to different driving behaviors. This is the case, e.g., if average detector speeds are used to compute estimated travel times.


� They can be called “accuracy” measures in this sense.


� Kwon et al. (2006) pointed out that as detector spacing decreases, so does the performance variation. However, no connection was established of this to detector locations, partially due to the fact that detector configurations were purely randomly generated in their study and hence the variation may be also due to the fact that some detectors are highly evenly distributed.
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