A Comparison of Fix Times and Estimated Accuracies in Application Programming Interfaces (APIs) for GPS-Enabled Mobile Phones

David P. Aguilar

daguila2@cse.usf.edu

Department of Computer Science and Engineering

University of South Florida

Tampa, Florida 33620-5375

Sean J. Barbeau

barbeau@cutr.usf.edu

Center for Urban Transportation Research

University of South Florida

Tampa, Florida 33620-5375

Rafael A. Perez

perez@cse.usf.edu

Department of Computer Science and Engineering

University of South Florida

Tampa, Florida 33620-5375

Miguel A. Labrador

labrador@cse.usf.edu

Department of Computer Science and Engineering

University of South Florida

Tampa, Florida 33620-5375

Philip L. Winters

winters@cutr.usf.edu

Center for Urban Transportation Research

University of South Florida

Tampa, Florida 33620-5375

November 30, 2006

This research is being conducted under the National Center for Transit Research at the University of South Florida with funding provided by the Florida Department of Transportation and the United States Department of Transportation.

Abstract

Several methods of obtaining Global Positioning System (GPS) coordinates by mobile communication devices have been developed in recent years. Some companies, such as Motorola, have developed proprietary Application Programming Interfaces (APIs) for the purpose of receiving data from GPS hardware. These methods provide a way to receive coordinates and other related information from positioning satellites, which may then be used in a variety of applications. This paper presents a comparison of two such APIs, focusing on the length of time for obtaining fixes and the estimated accuracy of obtained data. The results indicate that the Java 2 Micro Edition (J2ME) Location API, after initial activation, retrieves GPS data in a timelier manner (with a 34% difference in fix times) than the Motorola Position implementation that was also studied; however, the coordinates obtained thereby are estimated to be less accurate with a 69% difference.

1. Introduction

New models of mobile communication devices are being released at a rapid rate. Over the past few years new cellular telephone models have been put on the market by global communications companies every few months. One of the newer areas of interest in application development for these devices involves geographic location information. A wide range of services can be offered to mobile device customers based upon their location. In order for software applications to make use of real-time location information, the devices require input from data transmission sources such as cellphone towers and global positioning satellites.

 In the past, communication between mobile devices and GPS receivers was accomplished by means of the NMEA (National Marine Electronics Association) protocol. Today, this is done by interfacing with GPS-enabled microchips embedded in mobile devices such as cellphones and Personal Data Assistants (PDAs). GPS technology was introduced into many mobile phone models around the year 2002, (Strauss, 2004) and some of these phones come with software already included that displays latitude and longitude with varying levels of accuracy.

Location-aware applications include location-specific weather reports, emergency evacuation and position data (e.g., for 911 operators and the fire department), travel tracking and assistance, etc. (Barbeau et al, 2006) Some of these applications, such as emergency operations, rely upon timely reception of data for their usefulness, while others such as travel tracking and guidance depend more upon the accuracy level than the time it takes to obtain the geographic information. (Barbeau et al, 2006) Software developers must take these characteristics into consideration when developing location-aware software systems.

A number of approaches to programmatically obtaining GPS data have been employed, including the Location API (Application Programming Interface) designed for use with Sun’s Java 2 Micro Edition (J2ME) platform for cellphone programming as defined in the JSR179 standard (Java Documentation: Java JSR 179, 2006). Motorola, which has developed a number of GPS-enabled cellphone models, has also produced its own proprietary interface, accessible via 3rd party J2ME software. In early models of Motorola’s iDEN series GPS-enabled phones, this Position API was the sole method of interfacing with the GPS chip in certain models; however, most of the newer Motorola iDEN phones, such as the i860, i870 and i580 models, permit the use of both APIs, allowing software developers a choice between the two (iDEN J2METM Developer’s Guide 2005).

In order to identify the APIs’ strengths and weaknesses, performance testing can be done in the same hardware and software settings. Programs using these APIs that run in the same operating environment, and with access to the same resources, enable research to be conducted that compares the efficiency and reliability of the two methods listed above with a high degree of validity.

While the time it takes for the systems to obtain location data depends on signal availability, environmental obstructions, and atmospheric conditions, (iDEN J2METM Developer’s Guide 2005) (Spencer et al, 2003) this report reveals that the software interface is also a significant factor. This issue should therefore be considered by software developers, along with the specific needs of their software, in order to choose the appropriate method for obtaining location data.

While the iDEN J2METM Developer’s Guide provided by Motorola does contain a section comparing the Motorola and J2ME APIs in terms of their settings, concurrency usage, fix type and delay level, (iDEN J2METM Developer’s Guide 2005) no quantified data is included to provide users with a concrete idea of how the two interfaces measure up in terms of accuracy and timeliness.

The motivation for this research, therefore, is twofold. First, it quantifies the performance of the APIs that are implemented in the phones, revealing the strengths and weaknesses of the methods in a more specific way than is currently extant in the relevant literature. Second, it provides data toward a set of benchmarks that can be used to evaluate the performance of new API methods and the mobile devices that use them as they are developed (e.g., new cell phones).

This paper presents data gathered in a series of tests that determine the efficiency of obtaining GPS coordinates on the i580 iDEN series model of Motorola cellphones. As the i580 model is capable of utilizing both the Motorola and the J2ME APIs, coordinates may be obtained and their associated values compared without consideration for variations in hardware. The GPS firmware version used on the cellphone used is “SiRF Cust SW Version, v3.5.0.4 Falcon_2m.”

The remaining sections of this paper are organized as follows: Section 2 describes the methods used to obtain the data, including information about the metrics, software tools and trial conditions employed. Section 3 presents trial results, and a discussion of the data obtained by comparing the APIs in terms of fix times and accuracy. Section 4 reports conclusions, and Section 5 is the list of references.

2. Methods

2.1 Data Collection and Representation

2.1.1 Fix Times

The length of time required to obtain each fix was measured, in milliseconds, by means of a specialized software tool described in Section 2.2.

Fix times are obtained by the GPS-enabled devices according to three basic types: cold, warm and hot starts. In deciding upon a metric for this paper, the following information was considered:

· Cold starts are the fixes obtained by the software upon initial GPS activation, or those that are taken more than an hour apart. Hot starts are fixes that are obtained less than ten seconds apart and are the fastest method of data retrieval from a GPS source, often registering within a second or two of each other (iDEN J2METM Developer’s Guide 2005).

· Warm starts, or fixes that are obtained between ten seconds to an hour apart, were chosen for these tests. Many applications, such as location-based picture messaging, require this periodic reading of GPS coordinates as opposed to the continuous fixes of Hot starts or the occasional ones of Cold starts. They ensure enough time between fixes so that the readings obtained are not the result of continuous GPS chip activation, and may also be measured quickly enough to ensure reasonably uniform conditions without needing to repeatedly reboot the entire software system within the phone.

2.1.2 Accuracy

In addition to the fix times recorded in both series of tests, the accuracy estimate for each GPS fix (a horizontal radius measured in millimeters within which the fix value is believed to exist) was obtained from measurements calculated by the cellphone. These values, affected by a number of factors such as signal quality, geographic location, satellite accuracy, clock discrepancies, and environmental obstructions, (El-Rabbany, 2002) are automatically associated with the coordinate values returned by each API and were recorded for analysis.

2.1.3 Environmental Conditions

The geographic setting for obtaining data was kept as constant as possible during trial runs. All data used for API comparisons were collected during clear weather conditions and with minimal environmental obstructions from trees or buildings at a location in Tampa, Florida. Additional data sets (see Section 2.1.4) were collected under diverse environmental conditions in order to determine the effects of these conditions on the readings.
2.1.4 Data Sets

Since the implementation of much of the cellphone functionality underlying the J2ME application layer is proprietary in nature, significant care was taken in the selection of the conditions and input parameters of the data sets. In addition to the environmental conditions being held as constant as possible, as described in Section 2.1.3, and the minimalist design of the software tool, (Section 2.2) a number of API-specific factors were taken into consideration.

The Motorola API allows for a number of “delay settings,” two of which, the low and high settings, make use of the GPS chipset. On the “low delay” setting, the request made to the GPS-related hardware has a timeout value that is carrier-specific, but described in the documentation as “typically 32 seconds.” (GPS Programming Guidelines, 2003) If this timeout is exceeded, the position object is returned to the calling application with the appropriate error codes. The “high delay” setting allots more time to the chipset. The maximum response time for this setting is also carrier-specific, but “typically 180 seconds.” (GPS Programming Guidelines, 2003)

The J2ME API allows users to set the actual timeout value in seconds more precisely. With these differences in mind, two versions of the software tool for recording fix times and accuracy uncertainty values were created for each API. This includes one version for each delay setting of the Motorola API, and one for each analogous timeout value of the J2ME version, as described in Section 2.2.1.

Under the conditions described in Section 2.1.3, 100 fixes were obtained for each API at three distinct times of the day, morning, afternoon and night. Of the 100 fixes, 50 were obtained using the lower timeout value (“low delay” with the Motorola API and 32 seconds with the J2ME API) and 50 with the greater timeout value (“high delay” with the Motorola API and 180 seconds with the J2ME API). This resulted in a data set of 600 fixes.

In addition, further sets of fixes were obtained under diverse environmental conditions for comparison against the clear-day readings used in calculations. These sets were intended to investigate what, if any, effect these conditions have on the performance of the APIs in respect to the fix time and accuracy uncertainty values being studied. 100 fixes for each API were obtained:

· At an indoor location, on the second floor of an apartment about 60 cm from a closed window.

· Inside a parked vehicle, in the front passenger seat near the dashboard.

· On a cloudy day.

2.2 Software Tools

Four versions of a specialized software tool APITest were created to obtain the data set described in Section 2.1.4. Two versions utilized the Motorola Position API, and two utilized the J2ME Location API.

The J2ME versions utilize the following code segment in order to obtain GPS fix times and accuracy uncertainty:

FixTimeA= System.currentTimeMillis();

location = lp.getLocation(X);

TimeDiff = System.currentTimeMillis() - FixTimeA;

[…]

Accuracy = location.getQualifiedCoordinates().getHorizontalAccuracy();

The timestamp difference, obtained using the system call System.currentTimeMillis() provides the fix times, and the accuracy uncertainty is obtained from the location object that is returned to the application. In APITest 1A, the variable “X” is 32, specifying a 32-second timeout in order to correspond with the “low” delay setting of the Motorola API. In APITest 1B, “X” is 180 seconds for comparison against the “high” delay of the Motorola API.

The APITest applications associated with the Motorola API contain the following code segment:

PositionConnection posCon = (PositionConnection)Connector.open("mposition:delay=Y");

FixTimeB= System.currentTimeMillis();

position = posCon.getPosition();

TimeDiff = System.currentTimeMillis() - FixTimeA;

[…]

Accuracy = position.getLatLonAccuracy();

The PositionConnection object is defined before the initial timestamp in order to ensure that only the time of the fix request is measured. In APITest 2A, the variable “Y” is “low,” providing a low timeout value to match the 32 second maximum request time of APITest 1A. In APITest 2B, this value is “high” for comparison against the 180 second time limit of APITest 1B.

Except for the code segments reproduced above and the “include” and declaration statements required to associate each application with its required libraries, all versions of the APITest are identical. For each data set, the application obtains an initial “primer” value for the GPS chip to set it in a warm start state, and then the readings are recorded at user-specified intervals (at least 10 seconds apart to ensure that warm starts are obtained). Fix times and accuracy uncertainty values are recorded in an array, and these numbers are displayed to the user after all fixes are received.

Since both APIs reside at the same software layer within the cell phone’s internal hierarchy, (Ballantyne et al, 2006) the function calls of the APITest application provide an effective means of isolating and measuring the effect that the APIs specifically have upon the fix times required to obtain position data. The accuracy uncertainty value, being inherently associated with the data object obtained in either case, is automatically provided by the function calls and can merely be extracted and recorded for comparison.

3. Results and Discussion

3.1 Data Analysis

3.1.1 Fix Times

The fix times obtained at three different times of day under clear conditions are displayed in Figure 2, along with an overall average.

The results are seen to be generally consistent over the time of day, in terms of which API has the lower fix time (i.e., faster performance). In addition, the average differences between results using the “high” and “low” delays for the Motorola API, (9,832 ms and 11,943 ms respectively) as well as the “32 second” and “180 second” values for the J2ME API (7,019 ms and 7,290 ms respectively) were shown to be relatively insignificant. The data sets were therefore combined for purposes of evaluation.

The results obtained from averaging the fixes may be expressed as percentage differences according to the formula:

[image: image1.wmf]100

1

2

1

%

*

-

=

Value

Fixtime

Fixtime

Diff

The data reveals that the J2ME API retrieved fixes more quickly with a 34% difference than the Motorola API with a higher variance of 25.3%.

3.1.2 Accuracy Uncertainty

As with the fix times, the accuracy uncertainty values obtained at the different times of day under clear conditions are generally consistent over the time periods used for obtaining data. The averaged values over the three distinct times reveal a significant difference in the accuracy uncertainty between the APIs. This time the Motorola API displays superior performance, providing coordinate data with an estimated 69% less uncertainty in the horizontal accuracy (note that less uncertainty is better) than the Java API and with a 74.7% greater variance, as indicated by Figure 3.

The accuracy uncertainty data was combined for the “high” and “low” sets as was done with the fix times. The average differences between the “high” and “low” uncertainty settings for the Motorola API, (8,321 mm and 5,242 mm respectively) as well as the “32 second” and “180 second” delay values for the J2ME API (21,299 mm and 22,725 mm respectively) were again shown to be relatively insignificant.

3.2 Comparison Data Sets

3.2.1 API Differences in Comparison Data Sets

A set of average fix times and accuracy uncertainty values was recorded indoors, in a parked car, and on a cloudy day in order to evaluate the effect of these environmental obstructions on the APIs by comparison with the clear day, outdoor readings.

Within the data sets taken for comparison, which are discussed in detail in the following sections, the trends noted between APIs remains constant across environments. The J2ME API provides higher performance in terms of fix times in the “cloudy,” “indoor” and “car” sets: 37.7% less time, 54% less time and 75.4% less time respectively.

The Motorola API gives a higher performance in these sets in terms of the accuracy uncertainties: 75.4% more accurate, 35.4% more accurate and 71.3% more accurate respectively as estimated from the uncertainty values.

3.2.2 Fix Times in Comparison Data

A comparison of fix times in the data sets taken in addition to the “clear” readings is displayed in Figure 4.

For the J2ME API, the figures reveal that the cloudy and parked car values differ from those which were taken on a clear day by 10.7% less and 34% more time respectively. The Motorola API obtains fixes in 5.5% less time and 24.6% more time for the cloudy and parked car environmental conditions respectively. The largest environmental effect was shown to be created by the condition of being “indoors,” taking more time by a 60.2% difference compared to “clear” for the J2ME and a 72.2% difference for the Motorola API.

When overall API times are considered, (combining the J2ME and Motorola numbers) the “cloudy” values were not significantly different from the “clear” readings (a 7.6% difference in favor of the “cloudy” readings), and the “car” data set showed only a small decrease in performance – a 28.7% difference. The indoor data set showed a 68.4% difference from the “clear” set, taking a significant 3.17 times as long on average to obtain a fix.

3.2.3 Accuracy Uncertainty in Comparison Data

In considering accuracy uncertainties, it is important to bear in mind, as stated previously, that a higher value indicates a decreased level of performance. Figure 5 shows the comparison of environmental conditions against the clear day set, and again it appears that the “indoor” data set performs the least well, as one would expect from the heavy obstruction provided by solid walls and a roof.

The differences between the “clear” readings and the environmental conditions of “cloudy,” “indoors” and “car” are 6.56% more, 13.97% more and 4.16% more accuracy uncertainty respectively for the J2ME API.

For the Motorola API, the differences between the environmental conditions of “cloudy,” “indoors” and “car” are 14.6% more accurate, 59% less accurate and 2.9% more accurate respectively as estimated from the uncertainty values, with the “cloudy” set providing the best results by a slight margin.

When overall API accuracy uncertainties are considered, (combining the J2ME and Motorola numbers) the differences between the environmental conditions of “cloudy,” “indoors” and “car” are 1.9% less accurate, 31.6% less accurate and 2.6% less accurate to get a GPS fix respectively (as calculated from the uncertainty values), with the “clear” set providing the best performance in each case, and the “indoor” set providing the worst.

3.3 Discussion of Results

Due to the proprietary nature of the underlying implementation of both the Motorola and J2ME APIs, it is unclear from a software standpoint exactly why the differences in response times and estimated accuracy uncertainties exist when using very similar input settings for each API. It is logical that the API with the longer fix time is more confident in its accuracy results because the software and hardware can execute more calculations during this extended time in order to determine a more precise position. However, it is unknown why the Motorola API waits longer on average before it returns a fix. Since the Motorola API was implemented previous to the J2ME API, it is possible that optimizations have been included in the implementation of the J2ME API that were not included in the original implementation of the Motorola API.

While environmental and weather obstructions appear to affect the readings to a significant degree, the general trends between APIs in terms of fix times and accuracy uncertainty values remain consistent although the degree of difference is significantly altered by heavy obstructions (i.e., building walls).

These findings suggest that programmers may need to prioritize the factors most important to the applications being developed. If it is determined that timeliness of coordinate retrieval is more important, the standardized J2ME API will prove more useful, provided that the Motorola iDEN mobile phone supports this interface. In other cases where accuracy is more critical than the time it takes to retrieve repeated location coordinates, the Motorola API will serve a more useful function in the Motorola iDEN phone models.

Another noteworthy issue is the portability of the developed application. While the interface of the J2ME API is standardized across mobile phones and networks, the Motorola Position API is unique only to Motorola iDEN mobile phones. Therefore, if an application utilizes the Motorola Position API it will not function on handsets made by other manufacturers, or even on Motorola handsets outside of the iDEN series family. An application developed using the J2ME Location API should function on any handset that supports the JSR179 standard. (Java Documentation: Java JSR 179, 2006) However, since each handset manufacturer will implement the software and hardware underlying the J2ME API using their own proprietary methods, performance of even the standardized J2ME API may differ significantly across cellular devices and network platforms. Positioning technologies other than GPS such as Enhanced Observed Time Difference (E-OTD) or Advanced Forward Link Trilateration (AFLT) may be used to provide location information to a cell phone, which could further contribute to large differences in the time required to calculate location information or the estimated accuracy of the position data that is returned. These potential differences in performance further illustrate the importance of benchmarks, such as the data presented in this study, that quantify performance under various conditions for APIs that provide access to real-time position information for mobile devices.

4. Conclusions

Many new cell phones are taking advantage of GPS technology in order to provide location-aware services to consumers. A number of phone models, such as the Motorola iDEN series, provide application developers with a choice of application programming interfaces (APIs) such as the standardized J2ME Location API and the proprietary Motorola Position API for the purpose of interfacing with the embedded GPS hardware. In this study, a software tool was employed to perform a comparison between the these two APIs in one of the newest Motorola iDEN model phones with respect to the timeliness of obtaining location information and the estimated accuracy of the calculated position data.

The data collected during the course of the study reveals that the Java (J2ME) API performs at a significantly higher level than the Motorola API in terms of the time it takes to calculate a GPS fix during a “warm start.” This improvement is seen when GPS data is collected under a number of different environmental conditions. The J2ME Location API returns data 34% more quickly than the Motorola method under clear conditions; however, the Motorola API provides this information with 69% more estimated horizontal position accuracy than the J2ME API.

While it is unclear exactly why one API returns location information sooner than the other when similar input parameters are used, the tradeoff of timeliness for estimated accuracy of GPS data leads to a logically sound conclusion that during the longer response time more GPS calculations can be performed in the handset, which leads to a higher confidence in the accuracy of the data. The differences observed in the comparisons of the APIs point to clear, general trends in system performance that appear regardless of environmental conditions, although the actual response times and accuracy uncertainty values are naturally affected by these factors.

The information presented in this paper also provides a quantitative basis that can be used for comparison against new cell phone models as they are released into the commercial marketplace. It may also encourage the creation of standardized benchmarks for evaluating the performance of various positioning technologies and implementations that will be developed in the future.

5. References

Ballantyne, W., Turetzky, G.B., Slimak, G., Shewfelt, J. 2006, ‘PowerDown: Achieving Low Energy-Per-Fix in Cell Phones,’ GPS World, July 1, 2006, p. 4,

http://www.gpsworld.com/gpsworld/article/articleDetail.jsp?id=352807&pageID=4, retrieved 21 November, 2006

Barbeau, S., Labrador, M., Winters, P., Perez, R., Georggi, N. 2006, ‘A General Architecture in Support of Interactive, Multimedia, Location-Based Mobile Applications.’ IEEE Communications, Institute of Electrical and Electronics Engineers, Inc. November, 2006, Vol. 44, No. 11. p156-163.

El-Rabbany, A. 2002, Introduction to GPS ,The Global Positioning System, Artech House, Inc., 685 Canton Street, Norwood, MA 02062

GPS Programming Guidelines, Version 1.0, © Motorola, Inc. 2003, p. 2

iDEN J2METM Developer’s Guide 2005, Version 1.98, © Motorola, Inc. 2005, pp. 496, 497, 499, 514-516

Java Documentation: Java JSR 179, © Nokia 2006,

http://www.forum.nokia.com/main/resources/technologies/java/documentation/java_jsr.html
Spencer, J., Frizzelle, B.G., Page, P.H., Vogler, J.B. 2003, Global Positioning System: A Field Guide for the Social Sciences, Blackwell Publishing Ltd.

Strauss, W. 2004, ‘Cell phones suck up the chips,’ EETimes Online Available at:

http://www.eetimes.com/op/showArticle.jhtml?articleID=18310801
Captions to Illustrations
Figure 1 – Software Version Diagram

Figure 2 – Fix Time Comparisons of APIs

Figure 3 – Accuracy Uncertainty API Comparisons

Figure 4 – Fix Time Comparisons

Figure 5 – Accuracy Uncertainty Comparisons

[image: image2.emf]APITest Application

J2ME

Location API

Motorola

Position API

[image: image3.emf]Fix Times (Clear Day)

0

2000

4000

6000

8000

10000

12000

14000

Morning Afternoon Evening Average

Time of Day

Time (Microseconds)

J2ME

Motorola

[image: image4.emf]Accuracy Uncertainty (Clear Day)

0

5000

10000

15000

20000

25000

30000

Morning Afternoon Evening Average

Time of Day

Accuracy Uncertainty (mm)

J2MEAcc

MotAcc

[image: image5.emf]Data Set Fix Times

0

10000

20000

30000

40000

50000

Clear Cloudy Indoors Car

Conditions

Time (ms)

J2ME

Motorola

[image: image6.emf]Data Set Accuracy Uncertainties

0

5000

10000

15000

20000

25000

30000

Clear Cloudy Indoors Car

Conditions

Accuracy Uncert. (mm)

J2ME

Motorola

PAGE
20

_1239321028.unknown

_1226341088.vsd
APITest Application

J2ME
Location API

Motorola
Position API

