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ABSTRACT

The optimisation of bus size was dealt with in depth in the 1980s. Interest had waned with time but has recently once more come back to the fore. Technological advances made over the last 20 years in vehicle design have mainly been directed at reducing operating costs and being more environmentally friendly. In this paper a problem of vehicle type assignment and frequency optimization is proposed for minimizing the total social costs involved in operating a transport system. The decision variables for the problem are the optimal size and type of buses and their frequency on each route.
By finding an optimal distribution of bus types we can save money and energy and at the same time respect the environment.
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INTRODUCTION

Creating an urban public transport bus service depends on different factors: network structure; the distances between stops and routes; fare pricing policies; frequency of operation and the size and type of the buses used. 

These last two variables may be the most amenable to change, given that most of the former, apart from not being easy to change, are already well established and follow the criteria of satisfying the demand. Referring to pricing policy, it has been widely demonstrated that the elasticity of the demand with respect to bus fares is practically rigid (De Rus et al., 2003).
Therefore, this article concentrates on optimising the frequency of the routes and the size of the buses and considers that the rest of the variables involved in operating the system are fixed. 

The hypothesis of fixing all the other variables such as route distance and routings is the basis of the solution of a Transit Network Design Problem (TNDP) which solves the operational part of the design (optimal frequencies and bus sizes) thereby defining the physical design.
This work studies the relationship between bus frequency and bus size. The previous hypothesis has been considered from two points of view: on the one hand to study the above mentioned relationship and on the other hand, as it is more common among transport companies, to act on the operational design variables not only on the physical design variables.
The bibliography on the subject indicates that many previous studies have tried to demonstrate the advantages of using smaller buses rather than the standard high capacity vehicles. This work evaluates the advantages and disadvantages of each type and, depending on different conditioning factors, establishes which vehicles are apt or not for which service to minimize the social cost of the system. 
With reference to the allocation of public transport, this work is inspired by and uses as a starting point the works of Spiess and Florian (1989), De Cea and Fernández (1993) and dell’Olio et al. (2006).

A cost optimisation model is proposed which interacts with a model simulating the operation of the public transport system. 
STATE OF THE ART

Optimal bus size and type was studied in depth in the 1980s when a whole series of policies were developed giving priority to local public transport with the aim of reducing traffic congestion in large urban areas.

The main work at this time was done by Jansson (1980), Walters (1982), Vijakamur (1986), Glaiser (1986), Oldfield and Bly (1988), 

Most of these studies not only concentrated on finding the optimal bus size but also tried to find the optimal frequency for running each route.
The work of Webster (1968) provides a useful starting point for this type of study. In London, Webster studied the effects of transferring travellers from the private car to differently sized surface public transport vehicles. Later, Webster and Oldfield (1972) followed this up by proposing modal distribution models based on minimizing the overall cost of the private and public modes. Finally, Vickrey (1955) and Mohring (1972, 1976) published recognised works which establish that the frequency of running routes should be proportional to the square root of the demand.

Jansson (1980) showed that the frequency of the off-peak service should not differ much from the service provided at peak times due to the operating companies underestimating the costs of the user in their analysis. The same author states that frequency is not very sensitive to changes in bus size and therefore considers that it is not necessary to use large buses. Walters (1982) also points out the benefits associated with using smaller buses on the public transport network.

Glaiser (1986) showed, for the first time, the importance of the cost per seat according to bus size indicating that the higher the number of seats, the lower the cost per seat has to be (using the existing relationship operating cost / number of seats. In a study done in the city of Aberdeen, this author concluded that it was more efficient to use smaller buses with a lower capacity.

Oldfield and Bly (1988) talk in depth about the advantages and disadvantages of using smaller buses and deal with the effects these buses have on the demand and frequency of service. 

At this time the Transport Authorities became more interested in the social character of the service they provided and leaned towards minibuses as the desired vehicles thus increasing frequencies and reducing waiting time for the passengers at the bus stops. 

TYPES OF BUSES AND THEIR USE

Although buses of the same size can have different capacities (different number of seats) they can be classified (assuming that a larger bus implies a proportionally greater number of seats) into 3 general categories: Minibuses, Standard Buses and High Capacity Buses (Vuchic, 1981). 

There are many different types of minibuses such as those used for transporting people with reduced mobility; taxi type services; services to areas with difficult access and rural services or those provided for areas with a low population density. This method of passenger transport is wrongly considered to be cheaper than a standard bus from an operational point of view. The profitability of using minibuses in low demand areas is based on the advantage associated with the operating cost per passenger.

Standard buses are normally about 11-12m long and can carry about 100 passengers of whom 40-50 are seated. In accordance with new urban planning laws, almost all standard buses are single deck, have wide doors, lifting ramps and areas reserved for wheel chair users. This type of bus is the most commonly used in small to medium sized European cities.

High capacity buses can be divided into two categories, the “double-decker” (two levels) and articulated (“bending”) buses. The former are disappearing, due to difficulties associated with accessing the upper deck, in favour of the latter which are seen more and more often. Articulated buses vary in length, anything from 15-18 m and can carry up to 70-80 seated passengers and a similar number standing.

Other types of buses are trolleybuses which are similar to standard and articulated buses but use electric motors. There are also replica trolley buses and dual-powered buses, electric buses, hybrids and those that use alternative fuel (biodiesel, etc).

Minibuses give greater frequency to the user for any given service (Oldfield y Bly, 1988), but they become comparatively more expensive with an increase in the number of seats as demand increases. If smaller buses are used then higher frequencies have to be provided to guarantee a good service.

Therefore, in this study it is assumed that:

1.
Increasing the size of the vehicle increases the operating costs. 

2.
The capacity of the vehicle and its degree of occupation (passengers/vehicle) significantly affect the total costs of the system. 

3.
The driver’s salary generally accounts for 60-70% of the operating costs and doesn’t depend on the size of the vehicle (the driver receives the same salary irrespective of the type of bus driven). This implies that the degree of occupation of the bus is important and therefore it is also important to take into account the passenger capacity limits of the vehicles.

The following table (Table 1) summarises the advantages and disadvantages of using smaller buses or larger buses according to the potential demand in their operating area.

Table 1 advantages and disadvantages of using smaller buses or larger buses vs. level of demand.

	
	Minibuses
	Standard or high capacity buses

	
	Advantages
	Disadvantages
	Advantages
	Disadvantages

	High demand areas
	They can operate with high frequencies
	Risk of activating capacity limit
	Normally offer a comfortable service
	Less frequent than minibuses

	Low Demand areas
	Lower operating costs and more flexible
	Drivers salary more significant
	None
	Very high operating cost per occupied seat


It is well known that in low demand areas not only small buses help to offer a higher frequency of service. It is no less certain that in high demand areas, with a high rate of passenger arrival at the stops, the capacity limit could be activated and a high number of passengers may not be able to get on the bus and have to wait for the next vehicle suffering a high waiting time which the user believes to be 2,5 times that of the journey. But what is the level of demand that allows the planner to decide which type of bus is needed for each service? This article wants to provide the answer based on scientific criteria which deal with the problem from both company and social perspectives.
To that end an optimization model is proposed which tries to answer the above mentioned question.
THE PROPOSED MODEL
A bi-level mathematical optimisation model is proposed to provide the optimal bus size to be used on each route. At the upper level is the function for social well being representing the costs both of the user and the operating company, subject to technological restrictions and satisfying the demand. The lower level considers a model for journey allocation (dell’Olio et al., 2006).

The decision variables of the model will be the frequencies of each route
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  which is a dummy variable (0, 1), assuming the value “1” if bus type k is used on route i and “0” in other cases.
The cost structure used in this study considers the user costs (UC) and the operating costs (OC). The user costs are obtained by simulation and are affected by decision variables as shown in the following formula:
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Where:

TAT = Total Access Time.

TWT = Total Waiting Time.

TIVT = Total In-Vehicle Time.

TTT = Total Transfer Time.
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Operating costs are taken to be the sum of the direct costs plus the indirect costs (Ibeas et al., 2006). The Direct Costs take in three factors: Costs of distance travelled (km) (CK), costs per hour due to delays (CR) , personnel costs (CP), and fixed costs (CF). The Indirect Costs (CI) were found in other studies to be represented by 12% of the Direct Costs (Ibeas et al., 2006). 
The total cost of the kilometres travelled is equal to:
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Where:
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= Length of route i.


[image: image10.wmf]i

f

= Frequency of service on route i.
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= unit cost of kilometre travelled by a bus of type k.
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= mute variable given value 1 if type k bus is assigned to route i and value 0 in other cases.

The cost of a bus while at the bus stop for passengers getting on and off will be:
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Where:
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= average time for passengers getting on and off, for bus type k.
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CR

= unit cost per hour of bus type, while at the bus stop for passengers getting on and off.
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= demand for travelling on route i obtained through simulation.

TGk can be calculated by using the formula proposed by Gibson J. (1998):
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Where:

NSj (NBj) = Number of passengers getting on/off using door j at the stop
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If the bus stop is congested then passenger movement becomes disorganised and down time (
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) and the marginal time for getting on the bus (
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) may increase. Similarly, the marginal time for getting off the bus (
[image: image21.wmf]B

b

) increases if the bus is full and the passengers take longer to reach the door. Marginal times are also susceptible to the number of passengers trying to perform the task.

Personnel costs are taken to be the cost of the personnel actually working on the bus:


[image: image22.wmf]å

=

i

i

p

f

C

CP


Where:
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The fixed costs are calculated using the following formula for buses that are actually circulating:
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Based on this cost structure the optimisation problem is defined at the upper level:
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Where the first restriction defines the characteristics of the variables 
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 being binary variables, the second restriction states that each route can only be given one type of bus, and the third is a restriction of satisfying the demand depending on the capacity of the different types of buses where 
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is a coefficient of how full the bus is and takes a value of between 0 and 1.
The lower level is modelled using a public transport assignment model.

The equilibrium conditions established for the considered problem can be formulated using a variational inequality of the following type:
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Where c is the cost vector in sections of the route; V is any valid vector for flows in sections of route 
[image: image31.wmf]{

}

s

V

 and V* represents the solution for equilibrium in terms of flows in sections of route.

A method commonly used for finding a solution in these cases is the diagonalisation algorithm (Florian, 1977; Abdulaal and LeBlanc, 1979), where separable cost functions can be found at each iteration and, therefore, the posing of an equivalent optimisation problem. Alternatively, a method can be used which directly solves the problem of equilibrium assignment such as the algorithm proposed by Nguyen and Dupuis (1984).
Consequently,  the model for calculating equilibrium in public transport networks used in the formula requires that a more complex network be defined, this is represented by a graph 
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, where S is the sum of the arcs in the network, formed by route sections and access arcs. A route section is a portion of a route between two consecutive transfer nodes, and is associated with a group of routes which are equally attractive to the user (see De Cea and Fernández, 1993). The optimisation problem equivalent to the variational inequality 
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will be the following:                                                                                            
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where:

W: Group of origin-destination pairs O-D.

w:  Element of group W, in which 
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, with i, j centroids.

Tw: Total number of journeys between O-D pair w for public transport users.

l:  Sign for designating a public transport route.

R: Group of routes available for users of public transport.

r:  Sign for designating a public transport route.
Rw: Group of public transport routes associated with O-D pair w.
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: Flow of passengers using public transport on route  r.

s:   Sign designating a section of a public transport route

S: Group of route sections available for users of public transport.

cs :  Cost of journey for users of public transport on route section s.

(sr :  Route section-route matrix: takes value 1 if route r passes by s and 0 in other cases.

Vs: Passenger flow in route section s.

vls:  Passenger flow in route section s using route l.

fl:  Frequency of service of route l.

fs:  Total frequency in route section s.

Bs: Group of common routes.

Where:
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Where:
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α,n and β  = calibration parameters.

Ks  = the capacity of route section s .

Vs  = total number of passengers in route section s.
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The model assumes that the users choose from all the possible routes that connect any two nodes in the public transport network, the chosen route minimises their total journey time (cost) (fare + journey time in vehicle + waiting time + access time).

The system is assumed to have a limited capacity and, therefore, journey times increase as the number of system users increases. It is also assumed that congestion exists at the stops, given that passengers experience waiting times dependent on the total capacity of the group of routes and on the number of passengers wishing to use these routes for their journeys.

Once a passenger has boarded a vehicle at a stop, the journey time on that vehicle is only determined by the actual level of congestion on the network (flow of public transport and private vehicles).

Referring to the group of routes available for making any particular journey, the model assumes that between each pair of nodes on the public transport network there is a group of “common routes” which are equally attractive to the user. Therefore, at each stop, the passengers consider the group of common routes for making their journey and get on the first vehicle which belongs to that group and has available space.

Depending on the existing congestion in the system, different groups of common routes can be defined for the user travelling between any given pair of nodes. It is generally considered that all the routes connecting a pair of nodes are “potentially” attractive. It is therefore, possible to define a primary group which contains the “fastest” routes and which corresponds to the group of common routes determined using Chriqui’s algorithm (see Chriqui, 1974, and Chriqui and Robillard, 1975). 

This group of common routes will be used by passengers when there is no congestion on the system. As these routes become congested then the “slower” routes start becoming more attractive with increasing waiting times on the “fast” routes.

SOLUTION ALGORITHM

The solution algorithm developed for solving the problem of finding the optimal frequency and sizes for buses contains four very simple steps:

1.
An initial feasible solution for frequencies is generated (
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.which is generally the real situation on the network.

2.
The optimisation problem is solved at the lower level (equilibrium assignment to public transport)

3.
New values of (
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) are generated using, for example, the  Hooke-Jeeves algorithm (Hooke and Jeeves, 1961) and the entire optimisation problem is solved at the upper level subject to the restriction of satisfying the demand, to determine 
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 we return to step 2 if 
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 the algorithm is stopped.

Although simple, the solution algorithm uses a heuristic approach which may cause some problems of convergence.
As in most bi-level optimisation problems we cannot guarantee the uniqueness of the solution and we have to at least be pleased with getting a local optimal.

CONCLUSIONS
The proposed model solves the problem of optimising frequencies and bus size on each route. Thanks to its formulation this model can be considered as a model for assigning bus types to different routes.

The model differs from previously proposed models in that it does not only optimise the capacity of the bus (passengers/vehicle) but also the technology employed. Cost functions are not considered here to increase as the number of seats increases. A discrete problem has been modelled where the unit costs of different bus types can be considered depending not only on the number of seats but also on the technology used (diesel, biodiesel, electric, hydrogen….)

As can be seen in the formulation of the model another important aspect is that consideration has been given to personnel costs and fixed costs relative to the buses being used and not just the totals. This method is very appropriate during the system’s design phase. The modelling interval is the peak time as it is assumed that at peak times practically all the fleet has to be operational. For any other case, it is very easy to obtain these unit cost parameters for each type of bus from the cost data of the operating company.

If this model is used to redistribute the buses available to the company, a restriction must be added to the upper level relative to the number of type k vehicles available to the company which will limit the maximum frequency available to each route using any given bus type.
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