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The analysis of route travel times is fundamental to the service planning process and development of realistic schedules.  Previous work has outlined the applicability of automatic vehicle location (AVL) data to the development of more accurate schedules.  The presentation of run time information, through the transformation of raw timepoint location data into run time data, is critical to making an effective use of an AVL investment.  Integration of a large amount of new run time information into the schedules department of a large system transit operator is not a trivial task, and must begin with a simplified analysis environment.  The development of an interactive web-based presentation of run time information is outlined identifying the challenges and future analysis potential.  

Introduction
Central to the successful operation of public transportation is the development of an accurate schedule, or timetable, which is the basis for providing reliable service.  The transit planning schedule making process requires a diverse set of inputs consisting, in part, of passenger demand and transportation network limitations (travel times).  Until recently, nearly all of the inputs to the service planning and schedule development process were manually obtained with costly field checking staff.  Currently, agencies with advanced data collection technologies are often unable to effectively analyze and present raw data as information for use in improving the customer experience of transit.  Transforming large quantities of raw automatically collected data into useable information suitable for building an accurate schedule remains a challenge across the public transit industry.  
The ability to effectively present archived automatic vehicle location (AVL) data as run time information is essential to improve the performance and management of transit systems.  The modern schedule maker must deal with many challenges in producing transit schedules, often without the analytical skills or time to harness the potential of automatically collected data.  Large transit agencies must seek methods of converting event-based data into interactive information systems tailored to the needs and skills of the planning staff.  The flow of data from schedule to vehicle and back as valid observations lends to significant advantages in run time data analysis.  For large agencies, developing methods of proactively determining the route segments or times that need the most attention is critical.  The essential aspect of developing a robust web-based run time analysis environment based on raw timepoint event data is presented as a component of the schedule making process.  
The Chicago Transit Authority (CTA), as the second largest transit agency in the United States, is actively turning raw vehicle location data into run time data to support building better schedules.  The work presented here is the culmination of nearly eighteen months of development of a robust set of web pages to support run time analysis.  The paper here is intended for use at many levels, including transit researchers, professionals and senior management.  Sufficient detail is provided to begin to construct an analysis environment with data from other transit agencies.  
Run Time Analysis Methodologies
The process of assigning adequate run times to trips and route segments is not a new concept in transit schedule development and the methods of obtaining such data are rapidly improving.  Historically, run times were manually observed or obtained through anecdotal reports from supervisors or bus operators.  A 1978 study on transit service reliability investigated the current practice of monitoring run times through point or ride checks.  Most routes were only observed for a few days each year for ridership and schedule adherence.  Clearly, manual data collection does not adequately capture the variability in run times, the effect of seasons and other factors.  The same report also defined the concept of recovery time as the time allowed in the schedule between the scheduled arrival time at the destination and the scheduled departure time of the next trip.  Recovery time allows buses to leave, for their next trip, on time while allowing for the variability in travel times.  Historically, these times are set to labor standard minimums as run times and recovery times were kept tight to cut costs. (Abkowitz, 1978)  
As transit operators became more concerned with transit service reliability, methods for setting more accurate route run times began to evolve.  Levinson outlined the general practice of the Chicago Transit Authority (CTA) in 1991, as setting route run times “slightly shorter than the observed average, ignoring extreme observations.”  The effect was intended to push the operator and cut costs by providing just enough run time.  Also noted was a concept of setting route segment run times such that a lower percentage of trips would complete a segment within the allotted time at the beginning of the route but ensuring a greater percentage would complete segments within scheduled run time at the end of the line.  In both cases, a 95% likelihood of departing on-time for the next trip was established through scheduled recovery time.  (Levinson, 1991)
The CTA commissioned a Bus Schedule Efficiency Review to address efficiency and reliability issues over a one year period in 2002.  Manual data were collected by contractor and agency staff for fifty core bus routes and analyzed to propose an optimized methodology and generate new schedules.  The vendor supplied proposed methodology consisted of setting run times such that 65% of trips would complete the trip within the scheduled time.  Recovery time, or layover was proposed at a level that would allow 90-95% of next trips to depart on-time, with a minimum layover of at least four minutes.  The vendor analysis suggested that savings generated came from the development of realistic schedules and optimized recovery time.  The practice outlined continues today, however there was no plan to continue the arduous task of collecting run time data (Transportation Management Design, 2003).  
HASTUS ATP

The CTA commissioned Transportation Management and Design study (2003) utilized the HASTUS ATP module, a tool that allows schedule makers to analyze run time data and set run times.  The advantage of the HASTUS ATP module is that it is integrated within the schedule making software, an interface already familiar to schedule staff.  Run time observations are loaded to the HASTUS database and then loaded to an analysis environment.  The user can load the current schedule and define parameters for optimization.  The module can automatically define run time periods and can compute and set run times based on a defined criterion.  While the software is very tedious to operate, the benefit directly applying new run times to the production version of the schedule is noted.  CTA staff report HASTUS ATP analysis efforts rang from one to twelve hours based on the complexity of the route.  A sample HASTUS ATP analysis screen is shown in Figure 9, in the context of a web-based approach to loading data for analysis.  
Using AVL Data for Run Time Analysis
The primary purpose of acquiring an AVL system is not typically to study run times.  A 1997 report on AVL Systems for Bus Transit cites that only 40% of surveyed agencies listed “Performance Monitoring” as a justification or goal of implementation.  The vast majority indicate real-time monitoring of schedule adherence with safety and security as the top reasons for implementation of an AVL (Okunieff, 1997).  TriMet in Portland was an early adopter of using automated data to enhance the monitoring of service delivery.  Strathman (2001) outlined methods and analysis of not only using data to optimize run and recovery time but also to analyze the impact of individual operators on run time observations.  Furth, 2006 notes that the development of software tools to analyze AVL and APC data are still in the early stages, further suggesting run time analysis as one of the most beneficial application areas.  
Furth (2006) outlined many of the current uses of archived AVL data to improve transit performance and further defined run time analysis and setting recovery time methodology.  Much of the analysis centers around the TriTAPT (Trip Time Analysis in Public Transport) tool developed at Delft University of Technology in the Netherlands.  The 85th-percentile value of run time observations is defined a “feasibility criterion” as the value at which 85% of the trips will complete the trip on-time.  An outline of the TriTAPT Passing Moments method whereby the feasibility criterion is defined as completion time from each timepoint to the end of the line is presented.  The method determines segment run times from the end of the line, resulting in less holding of buses in the early part of the route to reduce end of line run time variability.  The concepts, of the TriTAPT method are likely beyond the reach of the average schedule maker.  The generation and presentation of results in an efficient, easy, and responsive environment is critical to adapting state-of-the-art methodologies with the current state-of-the-practice of transit schedule development. 
As shown, the past two decades of transit schedule research have yielded many methods for analyzing run time data.  The methodology is rapidly changing due to new sources of data and increased computing power.  While new methods are likely superior to older methods, the development of a robust set of tools for CTA schedule makers depend on a consistent application of an understood methodology.  The work presented builds primarily upon the CTA TMD Bus Schedules Efficiency Review methods; however, other methods are possible with the large run time data set.   
On-Board Bus Technology & Complementary Resources
The CTA, like many other agencies, began to outfit the bus fleet with an Automatic Voice Annunciation System (AVAS) after pressure to more reliably comply with the Americans with Disability Act (ADA).  The CTA used the procurement of an on-board system as an opportunity to combine an existing Automatic Passenger Counter (APC) request for proposal to leverage a common on-board platform.  The CleverDevices Intelligent Vehicle Network (IVN) is now the platform for voice annunciation, vehicle location, automatic passenger counting and automatic vehicle monitoring.  The IVN system, as installed at the CTA, provides a platform for transit integration and data acquisition by using resources that were designed to comply with an ADA next stop announcement mandate.

Furth (2000) details the current state of the practice with respect to AVL technology.   The AVAS installation at the CTA is relatively unique as the data obtained from the IVN logging system was intended for near-term APC/AVL analysis from the initial deployment.  The vision to use a mandated voice annunciation system as a method to collect data for use across the agency strengthened an open architecture to developing a solid data back-end system.  The following briefly outlines the current state of AVAS data analysis at the CTA. 
Currently, there are over 2,200 buses at the CTA equipped with the IVN system, representing the entire fleet, collecting data for near-term analysis.  The vehicles communicate via a wireless network daily to upload a file of logged events.  The data flow process is shown in Figure 1.  Each data file is forwarded from the garage server to a central server for insertion into an Oracle database.  Twice nightly the data are processed into a number of reporting applications.  The APC data simply represent four additional fields from equipped vehicles at stop events, representing the passenger movements and load.  At present, 40% of the CTA fleet is equipped with APC sensors, supporting ridership analysis.    
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Figure 1 Automated Voice Annunciation System Data Flow
The IVN system is tightly integrated with the HASTUS schedule system, as outlined in Figure 1.  The schedule integration was initially designed to simplify the selection of routes and to reduce the need for operators to interface with the AVAS, by enabling a simple log on with badge number and run number.  The tight HASTUS schedule integration also allows the IVN system to collect accurate timepoint level data for each trip and provide updated schedule adherence information to the operator as timepoints are passed.  The IVN navigation system identifies the arrival and departure time at each timepoint, for all trips operated in automatic (schedule-based) mode.  These timepoint observations are logged and schedule adherence is visually presented to the operator as they operate the route.
How Timepoint Data are Collected
The computation of run times must account for the methodology for how timepoint data are obtained from the vehicle.  The IVN navigation system determines that a bus is at a timepoint when the positioning system determines that the vehicle is within 30.5 m (100 ft) of the timepoint coordinates.  For cases where the bus never gets within the threshold of the timepoint, the system determines the time the vehicle started to move away from the timepoint coordinates.  The departure time is used for analysis of the first timepoint and is determined as the point a vehicle is at least 91.4 m (300 ft) away from the terminal coordinates.  Some timepoint thresholds are larger to account for some terminals, and possible layover movements.  Accurate geographic positioning of timepoint coordinates and consistent enforcement of bus operation layover policy at the route level is critical to the collection of accurate end-to-end run time data.  A combination of field observation and Geographic Information System analysis with an aerial photo layer is often used to set timepoint locations.  

Schedule Run Time Data Computation

A schedule extract containing records for each trip is produced from the HASTUS schedule software as part of the production and implementation of a new schedule.  The schedule file is inserted into a custom, vendor supplied application, which produces the data for the AVAS.  Route, stop, timepoint, destination sign, audio and other data are assimilated and distributed to the fleet.  Each distribution produces a schedule export database containing the patterns, stop detail, timepoints, trips and trip detail a simple Access database, called the schedule export.  The schedule export is essential for analyzing data collected on the vehicle.  
The schedule export is inserted into a set of tables in an Oracle database for use with the actual data collected from the buses.  Once the schedule export data are loaded a set of procedures transform the data to support scheduled run time analysis.  The schedule data, as exported, does not inherently contain the scheduled run times which are required to match with the computed actual run time data.  A high-level data model is presented as Figure 2, with the schedule data represented by the box labeled “Disaggregate Schedule Data.”
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 Figure 2 High Level Run Time Analyzer Data Model
The schedule data as exported from BusTools are not directly suitable for fast analysis of raw AVL data for run time analysis.  A set of queries, run at each pick (schedule change), builds a set of run time tables by schedule.  The overall query logic to construct these tables are the same as the logic used to convert raw AVL data to run time observations which is described in the following sections.  The “Aggregate Schedule Data” tables shown in Figure 2 are created from the schedule export for use in generating the run time data. 
Turning Timepoint data into Run Time Data
The focus of the work presented is on turning raw timepoint event data into useful information for schedule makers and service planners.  The first step is the creation of run time observations between successive timepoint events and comparing these observations with the scheduled run time.  Once the master run time data are available, data are aggregated to produce the total end-to-end run time.  The end-to-end run times, compared with the schedule data, form the basis of an exception based system that can proactively identify the routes that have too much or not enough run time.  Route segments statistically having excess or inadequate run time for a given time period are considered exceptions and are identified for fast web-based presentation.  Figure 2 presents the main tables in a high-level data model listing the primary fields in each of the major tables.    
Run Time Data Creation

Computing run time observations from raw timepoint level data seems a straightforward subtraction of time values once the raw data are in a proper order.  Unlike a simple Excel spreadsheet, it is not trivial to perform multi-row analysis on a database of millions of rows of timepoint data.  The master run time table is computed from a complex nested Structured Query Language (SQL) statement to generate timepoint-to-timepoint run time observations.  Newer versions of the Oracle database technology provide functions called LEAD and LAG which allow for accessing multiple rows within a result set without the need for a self-inner join.  The details of the SQL and these functions is beyond the scope of this paper, however mention of the powerful “Analytical Functions” in Oracle is useful to those interested in implementing 

A sample of the computation of three trips of timepoint segment level data is presented as Table 1.  Note that the data are sorted by block identifier, trip identifier, and timepoint sequence.  The timepoint departure time is used for the first timepoint, while the arrival time is used for all subsequent timepoints. 
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Table 1 Run Time Computation Data Shift

The actual run time data are also joined to the scheduled run time data, which are generated from the schedule export data, as previously discussed.  The join of actual run time data with scheduled run time data, as the actual run times are computed, allows for direct computation of the schedule deviation, percent difference from schedule, and speed.  The computational time saved by directly matching the data to the scheduled run time is substantial and allows for an efficient web-based presentation.  Each row returned completely represents a single timepoint segment run time observation with complete context data (Route, Bus, Operator, and Pattern), as well as the schedule data and deviation from schedule.  
Run time data are created monthly as raw data are efficiently partitioned by month into Oracle tablespace partitions.  The CTA fleet generates about 3.5 million timepoint records each month.  Generating one month of run time data takes about thirty minutes.  The CTA currently has 31 months of timepoint-to-timepoint run time data available (3.4 million observations per month), which is over 100 million observations in 24 gigabytes of Oracle data (with an additional 20GB of index data).  The volume of data generated is not trivial and is beyond the scope of this work; suffice to indicate that adequate index space is critical to support efficient web-based queries.  
End-to-End Run Time Computation
One of the primary objectives of computing timepoint pair segment run time observations is to compute the end-to-end run time of the route.  Once the end travel time is computed the 65th and 95th feasibility criterions are obtained to calculate the suggested recovery time.  The end-to-end travel time measurements are also compared with the schedule to quickly identify the route patterns that have too much or need more run time.   
The challenge with end-to-end data are impacted by what Furth (2006) calls “end-of-line identification”.  The first and last timepoint segments are often subject to operators taking their layover at unauthorized or incorrect locations, greatly impacting the accuracy of segment run time measurements.  An example of one route end terminal timepoint involved the use of the wrong timepoint name for the terminal.  The WacMch timepoint was used as the terminal timepoint, however, the vehicles take recovery at WacCol.  Figure 3 shows a 300 foot circle around the WacMch timepoint as well as the location of long dwell events for the route (cluster of circles).  The observed “travel time” for the last segment of the route was much longer than the scheduled time because it includes the route recovery time.  By removing the first and last timepoint segments main-line analysis is possible free of possible systematic errors which tend to occur at terminals.  The ability to remove data observed from the first or last timepoint segment of the route allows for a more flexible analysis.  
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Figure 3 Invalid Timepoint Assignment for Terminal Layover

The master run time data table allows for easy end-to-end run time computation, summarized on any time interval across all route-patterns and including or excluding the first/last timepoint pair segment.  The master run time data contains a flag (Timepoint Pair Position) which identifies the timepoint pair as the first, last or only timepoint segment on the pattern.  Figure 4 shows the three types of run time spatial analysis segments including, timepoint pair (master data), end-to-end and end-to-end excluding the terminal timepoint pairs.  
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Figure 4 Types of Run Time Measurements

The end-to-end data are computed at the end of each pick, with a procedure that takes about an hour to run.  Storing the end-to-end run route run time observations allows for faster queries suitable for web based presentation and supports back-end analysis at the system wide route level.  The End-to-End run Time Table (RT_ENDRUNTIME) contains about 600,000 records per month.  The cost of storing the end to end run times outweighs the benefits of having to compute the end-to-end results on demand of the analysts.  
Aggregate and Summarization Processing

Aggregate exception based reporting is possible, once the master run time and end-to-end run time data are prepared.  The temporal analysis periods are the six standard CTA time period definitions outlined in Table 2.  Future analysis could divide the run time data into hours or half-hour increments, although, such fine analysis does not, at this time, lend to manageable aggregation for web-based presentation.  The spatial analysis is the route and direction pair (“route-dir”), further defined the pattern which is a unique start and end point on a route.  
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Table 2 CTA Standard Time Period Definitions
The feasibility criterion, as noted previously, is the X-th percentile run time observation, and is the preferred statistical measure to set run times.  Computation of the X-th percentile involves sorting the run time values and obtaining the value at which X% of the observations fall below.  An efficient method for obtaining aggregate travel time percentile values is integral to the useful presentation of data.  The Oracle Data Mining PERCENTILE_CONT function is used as shown:  

PERCENTILE_CONT(0.65) WITHIN GROUP(ORDER BY RUNNING_TIME ASC)
The function sorts the data by run time in ascending order and finds the observed value at which 65% of the observations fall below (Oracle, 2002).  The function is likely not known in the transit industry and is presented due to the simplicity and usefulness in the application of run time analysis.  The end-to-end aggregation computes the 10th, 25th, 50th (median), 75th and 90th run time percentile values for each route-dir and time period for a pick.  
Timepoint-Time period Exceptions

The run time master data set contains millions of records for each pick, in some cases thousands of observations are available for a given timepoint pair segment.  Analysts desire to summarize the observed run time and deviation from scheduled run time in a consistent manor to proactively identify the timepoint segments that have too much or not enough run time by time period.  A query is used to compute the percent of observations that fall within a 30% window of the scheduled segment travel time, as well as the 65th percentile observed travel time.  The data are stored by pick, garage, schedule type, route, direction, time period, and timepoint pair.  The run time aggregation by timepoint pair and time period is computed at the end of each pick, in a thirty minute process.  The aggregate timeperiod table (RT_AGGRTE_TIMEPERIOD) contains summarized data from the master run time data to support fast web-based presentation of the segments that are most in need more of time or have too much run time assigned.  
Turning Run Time Data into Information Using an Interactive Web Site
The presentation of run time data in an interactive web based format is critical to the successful transformation of timepoint data to run time information.  The skill sets, time demands, and need for fast access drive the need to quickly and easily obtain run time information.  Web pages were created using Visual Basic Active Server Pages (ASP) technology to allow planning staff direct access to run time data.  The pages follow a logical progression of end-to-end analysis results by pick and type of day, to a more detailed timepoint segment analysis.  A page also provides the ability to compare the run time observations from two different schedule picks.  Supplemental pages allow for analysis of non-revenue trips (pulling into and out of the garage), timepoint segment exception based analysis and exporting data to the HASTUS ATP run time analysis tool.  The main pages are briefly described, and sample pages are presented.  
End-to-End Web Page

The end-to-end web page, Figure 5, presents the computed run times by pick, schedule type (Weekday, Saturday, or Sunday), route, pattern, and time period.  Users can choose to exclude the terminal timepoint pairs.  The page can also present the suggested recovery time based on the difference between the 95th percentile value and the 65th percentile value (Levinson, 1991).  The upper and lower bounds of the feasibility criterion are parameters which allow for quick evaluation of the sensitivity of the agency recovery time policy.  The goal is to allow the agency to set a standard such that all schedule makers use the same method.  

[image: image7]
Figure 5 Route #14 Fall 2005 End-to-End Web Page   
Options are available to prepare a histogram or scatter plot of the run time observations.  A Microsoft Excel based front-end provides easy access to the end-to-end data, contained in the run time end-to-end tables, for advanced charting.  Detailed scatter plots for all route-pattern pairs are available and are particularly useful for identifying patterns and times of high end-to-end run time variability.  The route #14 northbound weekday fall 2005 pick is presented as Figure 6, note that there is an excess of scheduled run time provided for this route across most of the day.  A histogram of the same route and direction for the midday (09:00 – 15:00) time period is shown in Figure 7.  
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Figure 6 Route #14 Fall 2005 - End-to-End Run Time Scatter Plot
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Figure 7 Route #14 Fall 2005 - End-to-End Run Time Midday Histogram
One Route-Pick Page
Once a route is determined to have incorrectly assigned end-to-end run times, one must study the individual timepoint segments to adequately set the timepoint segment run times.  Even routes with appropriate end-to-end run times require timepoint segment analysis to ensure proper distribution of run times across the route.  The primary analysis page presents a single route for a given pick for all timepoint segments by time period using data directly from the master run time data.  The page presents a powerful analysis environment allowing for quick identification of run times that require run time adjustments.  An example of the page is shown as Figure 8 for the Route #14, for weekdays in fall 2005 sorted by time period and then timepoint pair.  


[image: image10]
Figure 8 Route #14 Fall 2005 – One-Route-Pick Web Page
The main route segment level analysis is performed using the One Route-Pick Page, which presents the percent of observations that fall within a specified time of the scheduled run time (30%) and are shaded if the percentage is below a threshold (80%).  The 65-th percentile run time observations are presented along with the average scheduled run time for the timepoint-period pair.  The average difference between each observation and the scheduled run time of the observation is also presented.  The last two columns present the percent of observations running slower or faster than the threshold of the scheduled time (30%) to provide an indication of the spread of the data around the schedule run time.  
Options on the page allow the user to prepare both a histogram or scatter chart of the timepoint-period pair observations.  Clicking on the count of observations allows the user to view the raw run time master observations.  The raw observations allow for further computation of the correlations between operators, or day of the pick generated in external spreadsheet applications.  There are many advanced page options allowing users to set the thresholds for shading, as well as choose what time is used for determining which time period an observation belongs (i.e. time at first timepoint, trip start time, or scheduled time).  Finally, the page supports export of data to the HASTUS ATP run time analysis module.  

A wealth of information is available in just a single web page for the user.  Other features include pop-up tips that present the average speed and average scheduled speed along with the length of the segment.  The data are quickly sorted by timepoint pairs then by time periods or time periods then timepoint pairs.  If a timepoint pair is the first, last or only timepoint segment on a route an indication is made to support additional study of the aforementioned “end-of-line issues”, which can isolate pull-in, pull-out, and short turn observations.  Given all the options available to the user the one-route-pick page can present nearly unlimited ways of viewing run time data previously unavailable in a simplified format. 
HASTUS ATP Export 

As previously discussed integration of AVL generated run time data with the HASTUS ATP analysis module was a key component of the development.   Run time data are typically imported to the HASTUS database through a properly formatted flat text file.  King County Metro generates such a file for the entire system on a regular basis from AVL data.  Due to database limitations and the desire not to duplicate similar data, the CTA desired a streamlined process whereby users can pick a given set of data and load these records to the HASTUS server without administrator support or text files.  A query is executed on the Oracle AVL server and imported, from a web interface, to the HASTUS Oracle server; the process takes about one minute.  Once data are imported the user can load them into the HASTUS ATP module.  
An example of importing HASTUS ATP data, loading it to the module, and generating new run times is shown in Figure 9.  
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Figure 9 HASTUS ATP Module – Route #14 Northbound between 79 Jef and 67 Jef
The HASTUS ATP analysis shown in Figure 9 is of 7,864 observations between 79th Street and 67th Street on Jeffery Boulevard in the northbound direction for the Fall 2005 Schedule.  The X-axis of the chart is time of day and the Y-axis denotes the run time measurements in minutes.  As indicated in Figure 8 this timepoint segment needs more run time 2.3 minutes and 1.5 minutes during the AM Peak and Midday time periods respectively.  The current run times assigned in HASTUS are shown as the line at eight minutes of run time which falls under most of the run time observations.  Two run time profiles were created with the HASTUS ATP tool with different run time periods and suggest generally increasing the provided run time for the timepoint segment.  
Two Route-Picks Page

The two route-picks page provides the ability to compare the schedule and run time observations for two picks (schedules) of a given route side-by-side.  The presentation allows for quick analysis of the effectiveness of run time changes or the affects of seasonal variability in run times.  The first schedule selected is used as the base and the second schedule is joined for matching timepoint segments and time periods.  The same options, parameters and HASTUS ATP export features are available as described for the one-route-pick page.  The effects of schedule improvements or continued performance of a schedule are readily apparent in the analysis.  
Timepoint Pair Exceptions Page

A final page of interest is the timepoint pair exception page which assists schedule makers to proactively identify the timepoint time segments that need the most attention.  Schedulers can select a route, type of service and schedule and produce a list of the time periods and timepoint segments where less than half of the observations complete the trip within 30% of the scheduled time.   The user can exclude the terminal segments (first or last timepoints) from the results to focus on mid-route issues.  An option is provided to select a single garage, as often a schedule maker might want to find periods of interest from one garage as typically the demands for an extra vehicle must come from saving a vehicle at the same garage.  
Planning Department Use

After multiple informal training sessions, adoption of the Run Time Web Analysis Tool is slowly becoming more recognized and integrated into the work program of the planning and schedule development process.  Current staffing levels and skill sets do not currently allow for a comprehensive review of all established run times.  A recent survey of a few staff members indicate that the One Route-Pick Page and the End-to-End Page with suggested recovery times are the most useful and popular pages.  Only about two users load data to HASTUS ATP for further analysis.  Service planners tend to use the site to make run time estimates for new service while schedule making staff use the site to adjust already established run times. 
Currently the use of the site is not widespread enough to provide analysis on costs or savings, although anecdotal positive impacts were noted.  Plans are underway to use the site on a more routine basis and tools are in development to track use and allow for user feedback to track the savings of run time modifications.  One of the conclusions of the TMD (2003) study was that service quality depends on realistic scheduled run times and not increased recovery times, the run time web site can now support a systematic setting of recovery time.  
Future Research 

While the development of a robust web-based run time analysis tool is a significant advancement in the application of AVL data to the schedule making process at the CTA, much work remains.  Given the time and skill constraints of a limited scheduling department, use of the run time analysis tool is still slow to integrate into the daily work routine.  The technical challenges of turning raw AVL data into information were largely solved through this effort, and provided the ability to quickly analyze run times.  However, there are some institutional challenges and a need to provide even more proactive reports on the areas of the system that need the most attention.
Proactive and Flexible Analysis  
A more proactive system that scores routes and weights the routes in an order of importance is desirable to better focus staff on routes that need the most redevelopment.  Upper management desires a method to report on the run time reliability of routes and to estimate costs or savings related to adjusting run times to match observations.  A pilot effort is underway to rank routes and present the top ten routes that have too much time and the top ten that need more time, weighted by platform hours or ridership.  Due to many routes having indeterminate terminal pairs the analysis should include options for excluding terminal segments.  

Another area of future development involves the ability to allow the users to define time periods.  The fixed time periods outlined in Table 2 are standard across the service planning and schedule making process and allow for easy web-based presentation.  Often planners want to study run times in user-defined time periods such as half hour intervals, or the existing HASTUS time periods.  Efforts to date include developing spreadsheet tools to analyze end-to-end run times by half hour period, and to query HASTUS data to compute run times based on the time periods defined for a given route in HASTUS.  A future system might optimize run times based on measurements and existing HASTUS time periods and load these optimized run times directly into HASTUS without the need to analyze in ATP or manually enter new run time values.  
Application of Other Run Time Analysis Methods

Now that the run time data are available in a database format it is possible to apply other state-of-the-practice and state-of-the-art research methodology.  Methods outlined by Hong, 2000 to develop more efficient schedules rely heavily on computed trip travel times and segment travel times to develop operational costs and service quality improvements.  The run time master and run time end-to-end tables are able to feed data into more complex analysis algorithms.  The TriTAPT software as discussed in Furth (2006) is one such algorithm that is worth testing, provided the results can easily be presented to schedule makers.  The results of TriTAPT are graphical and ideally we can integrate the results into the web-based format presented to streamline data analysis.  
The work of Tri-Met in Portland, Oregon to analyze operator related effects on run time is of particular interest now that a large repository of run time data is available.  The model presented in Strathman (2001) indicates that run time decreases linearly with increasing operator experience.  Analysis of the run time repository to identify operators consistently performing below their peers can identify those operators who may require additional training or evaluation.  Operational run-time data can support rewards for consistent run time performance as compared to other operators running the same routes.  
Conclusions

The development of a web-based run time analysis environment currently in use at the CTA was presented.  The focus of this work was the conversion of raw timepoint observations to useful run time observations on a web-based platform using standard and known analysis practices.  The challenges and some of the technical complexities of turning transit timepoint data into run time information were discussed for use within the transit research community.  Now that a platform for efficient analysis is operational we can begin to apply state-of-the-art analysis methods and further evaluate the use of AVL data for setting run times.  

The technical challenges of developing a simple web-based presentation of a vast quantity of processed run time data exposed institutional challenges to fully realizing the potential of run time data in the transit planning process.  Further analysis on cost savings and impact of modifications remain, as well as methods for further improving the analysis and streamlining the application of run time data to the schedule making process.  As transit planning and scheduling staff become more aware of the quality and uses of AVL data as run time information they will produce better schedules that will ultimately provide the transit customer with a better product.  
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