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Abstract
Revenue Management (RM) may include optimization of seat allocation if the existing seat allocation system is suboptimal. Transportation firms may decrease the average ticket price by introducing discounted tickets to increase the number of passengers. However, the total revenue may decrease if discounted tickets are introduced. We show that a RM model may be chosen in order to benefit not only transportation companies but also passengers. The results show that discounted tickets perform best for off-peak trains after optimizing with respect to seat allocation. On “intermediate” trains, which operate between peak and off-peak times, discounted tickets perform the best depending on the average passenger load factor.
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1. Introduction

1.1. Background
As passenger demand changes seasonally, during periods of high demand airlines can sell tickets at a higher price in order to earn more revenue, but when demand is low it is better for airlines to sell tickets at a lower price rather than leave seats empty. In practice, airlines use historical data to forecast periods of high and low demand in order to set ticket prices. Historical data alone cannot, however, incorporate customer behavior when forecasting. For example, passengers select the transportation company from which to buy tickets according to the other choices available. The share of each ticket type purchased (full fares or discounted fares) can change when factors, such as the advance purchase time and cancellation fee, change. If advance purchase restrictions are shorter, more passengers who would otherwise select full fare tickets instead select advance purchase tickets, even if the price does not change. 

Revenue management (RM) is a method for managing businesses selling products or services that face uncertainty in market conditions. This includes the most favorable conditions, and the right price which is not too high or too low is intended “to maximize passenger revenue by selling at the right price to the right customers at the right time” (American Airlines, 1987). For example, leisure trip passengers select low price air tickets and normally decide their trip schedules in advance, while business trip passengers have a higher value and cannot decide their schedules in advance. Airlines therefore offer discounted tickets with advance purchase restrictions for leisure trip passengers, while offering full fare tickets without advance purchase restrictions to business trip passengers. All the decisions involved in setting the price or quantities of tickets must be made using scientific methods.

In fact, revenue management was originally developed by airline businesses but the concept is employed widely in other businesses which have the following characteristics: (1) the products or services cannot be stored, (2) have a fixed number of units, and (3) it is possible to segment prices according to customers, e.g., passenger railways, hospitality services, tour operators, air cargo, and freight services.

1.2. Purpose of the research

As far as we know, RM has been employed in inter-city transportation in both the USA and Europe, but not in Asia. For example, in Japan, RM was adopted by airlines less than 10 years ago and has not yet been employed by railways. It is always helpful to understand the difficulties when introducing RM and we expect that RM is applicable to inter-city rail transportation in Japan.
RM may be utilized in inter-city transportation to promote non-business trips using cheaper average ticket prices. This may include travel by retired senior citizens, college students going back to their home towns, family visits, and leisure travel, for which there is usually a lower willingness to pay than for business trips. Moreover, RM can increase utilization of existing facilities (rail or air transportation) by decreasing empty seats at departure time.

The purpose of this research is to develop the passenger demand forecast method by considering passenger behavior, incorporating a passenger-choice model, and applying it to real situations. It is revealed that by using a choice model incorporating ticket selection, RM may be beneficial not only to transportation companies but also to passengers. The benefits for transportation firms are measured in terms of increased revenue, and the benefits for passengers are considered in terms of average fare decrease. 

This paper is composed of the following two sections. In the first section, conventional demand forecast methods using passenger behavior are employed. A model of passenger ticket choice is created and simulated for the competition between high speed (HS)-rail and airlines. The specifications of discounted tickets (including price, advance purchase time, and cancellation charge) may be determined using the model of passenger ticket choice in order increase number of passengers and revenue of HS-rail.In the second section, the combined implementation of discounted ticket and seat allocation (using the model of passenger ticket choice expressed in first part) for single-line multiple-stop lines is discussed. Seat allocation is one way to increase the utilization of existing transportation facilities. Japanese HS-rail currently employs a first-come-first-served (FCFS) policy for ticket distribution, and this seems to be an inefficient method with regard to facility utilization. Real HS-rail demand was modified using the model of passenger ticket choice assuming that discounted tickets were available on the HS-rail system, in order to provide input for an optimization process. 

2. Forecasting the proportion of each ticket type using passenger choice behavior

2.1. Independent-demand model vs. Customer behavior

Most of the traditional concepts of RM are expressed by “independent-demand models”, e.g., EMSR (Belobaba, 1987) and Littlewood’s model (Littlewood, 1972). These models are based on the assumption that the demand for each product is itself an independent stochastic process. Talluri and Van Ryzin (2004), however, state that consumer behavior is ignored in independent-demand models. Such models do not consider customer behavior regarding choice behavior or purchasing-time behavior. Moreover, they further state that demand is, in fact, also affected by individual choice behavior. For example, the probability of purchasing full-fare tickets may depend on the availability of discounted tickets at the time. Modeling customer behavior may ameliorate the limitations of RM. In this paper, we focus on customer behavior methods.

Understanding passenger ticket choice behavior is a powerful tool to find suitable prices and restrictions for discounted tickets in order to increase revenue. In this section, the objectives are (1) to model the behavior of passengers: how they consider price, advance purchase time and cancellation charges (or partial refunds) in order to select the most preferred ticket type available and (2) to show how a firm can adjust ticket characteristics in order to increase its market share and revenue.

There are several studies related to this paper. Dana (1998) showed that low value passengers (e.g., leisure oriented passengers) who are certain of their travel arrangements buy tickets in advance, reflecting the fact that their value only extends to the ticket price at advance purchase price. High value passengers (e.g., business oriented passengers) however, having less certainty regarding their requirements, and buy tickets on-the-spot because their net surplus utility is higher than at the advance purchase price. Dana’s example reveals the calculation of business passengers’ utility regarding advance purchasing and on-the-spot purchasing. Passengers benefit from discounts but the frequency of appearance reduces the total utility. While on-the-spot tickets are more expensive, there is a greater certainty that passengers will appear. In his example, Dana shows that all business passengers buy on-the-spot tickets as the expected surplus is higher. The frequency of business passengers is calculated from the probability that the number of passengers reaches each level. 

Gale and Holmes (1992) proposed that passengers learn their selection preference more than two flights before the day of making an advance purchase. If a passenger buys an advance purchase ticket, his net surplus is a function of reservation price, advance ticket price and the disutility (in monetary terms) of choosing a less preferable flight. Consumers must therefore trade the cheaper price against the likelihood that they will depart on a less preferable flight if they buy in advance. Otherwise, they will wait in order to buy their most preferred flight on the spot.

Even though the two studies mentioned above assume that reselling is prohibited and tickets are non-refundable, partial refunds can reduce the risk for consumers who buy tickets in advance. Courty and Li (2000) revealed a mechanism that screens passengers who learn over time to make valuations incorporating the effects of partial refunds under monopolistic markets. Ringbom and Shy (2004) provided a theory for calculating profit rates for partial refunds when customers do not show up or cancel. They claim that passengers yield more profit if partial refunds are higher.

In comparison to Dana’s study, Ringbom and Shy assume that the probability of showing up is the probability that passenger numbers reach given levels, while we refer to passengers’ self estimation of their probability of showing up. With regard to both Dana, and Gale and Holms, we suppose that the advance purchase time affects passenger utility because it can change the probability of showing up used in Dana’s research and the value of disutility used in Gale and Holms. In our passenger ticket choice model, we include ticket price, advance purchase time, cancellation charge and other factors that have the potential to affect passenger ticket choice.

2.2. Passenger ticket choice models
We propose that a passenger must make a trade off among three variables: ticket fare, advance purchase time and cancellation charge. Multinomial Logit Models and Nested Logit Models (Ben Akiva, 1985) are employed to estimate passenger utility and the proportion of passengers making each choice.
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U is utility, F is the ticket price (in Japanese yen), A is advance purchase time (in days), C is the cancellation charge (Japanese yen), 
[image: image38.emf]Table 3: The change of demand expansion, average price and revenue when the details of discounted ticket is changed
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HS-rail

1 no discounted ticket - - - 0.61 0.00 0.61 100%

2 discouted [13400, 5950, 14] 14 5950 10% 0.43 0.19 0.62 101% 0.97 0.99

3 discouted [13400, 5950, 7] 7 5950 10% 0.40 0.23 0.63 102% 0.97 0.99

4 discouted [13400, 5950, 3] 3 5950 10% 0.35 0.29 0.64 104% 0.96 1.00

5 discouted [13400, 2970, 3] 3 2970 10% 0.29 0.37 0.66 107% 0.95 1.02

6 discouted [13400, 2970, 7] 7 2970 10% 0.32 0.33 0.65 105% 0.96 1.01

7 discouted [13400, 2970, 14] 14 2970 10% 0.34 0.30 0.64 104% 0.96 1.00

8 discouted [10420, 2970, 14] 14 2970 30% 0.12 0.59 0.71 116% 0.76 0.89

9 discouted [10420, 2970, 7] 7 2970 30% 0.10 0.62 0.73 118% 0.76 0.89

10 discouted [10420, 2970, 3] 3 2970 30% 0.09 0.65 0.74 120% 0.75 0.90

11 discouted [10420, 5950, 3] 3 5950 30% 0.12 0.59 0.71 116% 0.76 0.89

12 discouted [10420, 5950, 7] 7 5950 30% 0.17 0.52 0.69 112% 0.78 0.88

13 discouted [10420, 5950, 14] 14 5950 30% 0.21 0.46 0.67 109% 0.81 0.88

14 discouted [7440, 2970, 14] 14 2970 50% 0.03 0.77 0.80 130% 0.53 0.69

15 discouted [7440, 2970, 7] 7 2970 50% 0.02 0.79 0.81 132% 0.52 0.69

16 discouted [7440, 2970, 3] 3 2970 50% 0.02 0.80 0.82 134% 0.52 0.70

17 discouted [7440, 5950, 3] 3 5950 50% 0.03 0.77 0.80 130% 0.53 0.69

18 discouted [7440, 5950, 7] 7 5950 50% 0.05 0.73 0.78 126% 0.54 0.68

19 discouted [7440, 5950, 14] 14 5950 50% 0.07 0.68 0.75 123% 0.56 0.68
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 is unobserved utility, i is the index of the alternative, n is the respondent, and 
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are coefficients. However, this model cannot reflect some forms of customer disutility, e.g., cancellation charges of on-the-spot purchases or advance purchases without cancellation charges. We assume that the disutility is an independent function of both advance purchase time and cancellation charge, as in the following examples.

Example 1
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U[10000 JPY, 0 days, 0 JPY] is the expected utility of a 10000 JPY (Japanese yen) ticket, purchased 0 days in advance with a 0 JPY cancellation charge. This Example 1 shows that the two tickets – which are purchased on the departure date (the advance purchase time is zero) with the same price, but different cancellation fees (e.g., one is two thousand Japanese yen and the other is zero Japanese yen) – have different expected utilities for passengers. In fact, both ticket types have the same utility for passengers because the probability of canceling the ticket is 0 if it is bought on the departure date (the usual case). Therefore, the cancellation charge of ticket 1, 2000JPY, is not a disutility for passengers.

Example 2
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This Example 2 shows that the utility of ticket 3 is lower that of ticket 4. As discussed in Example 1 the cancellation charge is considered a disutility only if a passenger has a probability of cancellation higher than 0. As for advance purchases, there is no disutility if there is no punishment for not showing up, i.e., cancellation charge (except for last minute passengers, who cannot anticipate their trip in advance, and who are excluded from this study). Without cancellation charges, passengers are free to make as many reservations as they want because they may cancel or not show up without any incurring any punishment. From these two examples, we conclude that only one form of restriction alone (advance purchasing or cancellation charging) cannot be considered disutility. We assume that the disutility of restrictions can be modeled as a combination of advance purchasing and cancellation fees.

In the model we propose, passengers must make a trade off between the utility and disutility of tickets. We assume that the utility of tickets is the discount rate, i.e., the difference between the full fare and discounted fare, while the disutility of tickets is derived from advance purchasing and cancellation charging. A cancellation charge is considered to be disutility if a passenger cancels his ticket. We therefore conclude that the disutility of a ticket is the product of the probability of cancellation with the cancellation charge (risk of cancellation × cancellation charge).

Regarding the risk of cancellation, we assume that the risk of cancellation is a function of advance purchase time,
[image: image4.wmf])
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, where R is the risk of cancellation and A is the advance purchase period in days. The risk of cancellation is between 0 and 1 because if the passenger definitely travels the risk is 0, but if they will definitely not travel then the risk is 1. The risk of cancellation is 0 when the advance purchase period is 0 days (purchasing on the departure date), because a passenger has no probability of cancellation (because he purchases on the spot), and the risk increases with the advance purchase period because he learns from information received or based on his experiences. Moreover, we assume that the risk increases rapidly from A = 0, but that the gradient of the risk function decreases when the advance purchase period increases. The risk function is shown in Figure 1.

Based on these assumptions, we further assume that the function for the risk of cancellation is Risk 
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, where C is a constant that may change for groups or individuals. To improve the passenger ticket choice model, we propose a new model:
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Note that constant C will be included into beta in estimation. So the function of risk in Figure 1 is also justified with the passenger ticket choice model.
In this study, we assume that passengers are screened by ticket choice into three groups: “advance purchasing passengers”, “restrictions & discount trade-off passengers” and “last minute passengers”. 
Advance purchasing passengers: most of passengers in this segment prefer to buy the cheapest available ticket. Compared with the other groups, the passengers in this group have a lower willingness to pay but a higher certainty of traveling (low risk of cancellation). Examples in this group include leisure trips and trips to one’s home town. In this study, we assume that this group represents leisure passengers. 
Restrictions & discount trade-off passengers: the passengers in this group can anticipate their schedule in advance. However, their risk of trip cancellation is higher than the first group because they are potentially business trip passengers who risk buying in advance. They are able to meet the full fare but still consider the discount rate. We therefore assume that they trade off the restrictions against discounts in ticket price. In this study, we assume that this group represents business passengers. 
Last minute passengers: the passengers in this group are able to meet the full fare ticket price. They are screened by advance purchasing (AP) restrictions because they do not know their trip schedules in advance. They cannot buy before they know or anticipate that they will travel. This segment is excluded in our study as the passengers cannot make any other choice besides on-the-spot purchasing. There are thus only two groups of passengers: (1) leisure trip passengers and (2) business trip passengers.

2.3. Data
A survey was conducted in March 2004 to demonstrate the applicability of the model to two methods of transportation (oligopoly market), because there are two main modes of inter-city transit in Japan: HS-rail and air travel. The Keihanshin (Kyoto, Osaka and Kobe) area and Fukuoka OD (Origin and Destination), which has around 600 km distance, were selected for this study because they are competitive, as shown in Figure 2. Table 1 shows the average parameters of the 330 samples. 

The data were collected from 513 respondents who live in the Keihanshin and Fukuoka areas using a web-based survey, and 330 samples were completed. The questionnaire included three main sections of questions: (1) Revealed Preference (RP) data: door-to-door OD and transit modes including access and egress, (2) Stated Preference (SP) data: passengers were asked nine questions regarding the choice of the most preferable type of ticket, and (3) other personal and transit related data, e.g., occupation, date and purpose of recent trips. 
Two modes were considered: (1) HS-rail, and (2) airlines. For the SP questions, there were six types of one-way ticket: three for airlines and three for HS-rail. The alternatives for the airlines were (1) full fare tickets, (2) web discounted tickets, and (3) special discounted tickets (1 day advance purchase discount). The alternatives for HS-rail were (1) full fare for a reserved seat (a type available in reality), (2) full fare without seat reservation (available in reality), and (3) discounted tickets for which the price, cancellation charge and advance purchase time were varied over nine questions. The difference between reserved and non-reserved tickets is that the position of the seat for reserved tickets is fixed and guaranteed, while the position of non-reserved seats is not fixed, so the ticket holder may have a seat anywhere on any train during the day that the ticket is valid if a seat is available. 

The two different modes of transit, HS-rail and airline, have some parameters which differ, such as travel time and the number of transfers. Additional parameters were therefore included in the utility equation as shown in Eq. 3.
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Oink represents k parameters, by which passengers can distinguish HS-rail and airlines for alternative i and person n, e.g., time spent outside vehicle, access and egress time. 
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 is the coefficient of Oink. Also, the term for the discount rate has been replaced by the fare (
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) of the ticket because the full fare prices of both modes are different. The Multinomial Logit Model was replaced with the Nested Logit Model with HS-rail for nest 1, and airlines for nest 2. The nests and tree of alternatives are shown in Figure 3.

2.4. Results
The results estimated using the models are shown in Table 2. Note that the upper and lower nest coefficients in the Nested Logit Model can not be separately identified because simultaneously estimation was used. The reason why an alternative specific constant for airlines (or HS-rail) was not included is that its t-statistic is low for business passengers and also it makes no convergence result for leisure passengers. The values of the t-statistic for all the coefficients reached 
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 was 0.24 for business passengers and 0.44 for leisure passengers. The coefficients of fare were negative because fare is a disutility. Leisure trip passengers could trade off restrictions against fare more effectively than business passengers, as reflected by the fact that the ratio of fare to restrictions was 10.3 (-0.260/-0.076) for leisure trips and 3.7 (-0.134/-0.013) for business trips. This means that leisure passengers preferred cheaper fares and that they could accommodate restrictions more easily than business passengers. 
The results also reveal that passengers also considered the time spent during transfers or waiting for vehicles as a factor when choosing the mode of transit (the longer the time, the less the probability of selection, because the coefficients were negative). The results also reveal that reserved seats were preferable for HS-rail passengers (since the coefficients of the non-reserved seat dummy were negative).
We calibrated the forecasting model (Nested Logit Model) by comparing the estimated proportions with real data. We conducted a survey in March 2004 but the latest year of available data is 2001. We therefore compared the estimated proportions with survey data, and the trends of the most recent 10 years of data available (1992-2001). Figure 4 shows that the estimated proportion was 61.47%, which is close to the proportion in our survey (62.10%) in March 2004 and also close to the real data for the year 1999. We conclude that the model was successful in forecasting the proportion of HS-train passengers.

We illustrated how advance purchasing and cancellation charges were applicable to HS-rail in terms of improving market share and revenue. The total number of passengers in Figure 4 was based on the total number of passengers in the year 1999 because the proportion in 1999 was the closest to the proportion in our survey in 2004. In other words, this figure showed the expected revenue and market share if the discounted HS-train tickets had been available in the year 1999. Moreover, we assume that (1) the total number of passengers did not change and there was no booking limit, (2) there was no constraint on capacity, (3) there was no booking limit, and (4) no specific date or time was preferred. 
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Considering Figure 5, case 1 was the base case, without discounted tickets. The remaining cases were sorted according to the price of discounted tickets with different cancellation charges and advance purchasing times. The proportions were computed using the Nested Logit Model calculation and the expected revenue of HS-rail was

Revenue = 
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where N is the total number of passengers (6.1 million), 
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 is the price of tickets of type i and i itself indicates the ticket type: discounted or full fare HS-rail. The total proportion of HS-rail tickets (including both full and discount fares) increased as the price of discounted tickets became cheaper, because passengers moved from airlines to HS-rail discounted tickets. However, the revenue achieved by HS-rail may not increase as this proportion increased because some of the passengers who used HS-rail full fares also moved to HS-rail discounted tickets which were cheaper. Figure 5 shows how the passenger behavior model helped the firm to increase their revenue by setting the price, cancellation charge and advance purchase time.
Although the purpose of this section is to see that a passenger would make a trade off among three variables (ticket fare, advance purchase time and cancellation charge), introduction of discounted fare seems to be a limited solution in terms of revenue maximization. Only scenario 5 and 6 accomplish revenue increase in Figure 5. This is because of our research assumptions, that we have not considered attraction from other modes except airlines nor induced demand. It showed, however, two things; one is that design of discounted fare is very important and sensitive to revenue, and the other is the fact on RM that revenue improvement is always small in terms of percentages.
2.5. Discussion and Conclusion
This section presented a forecasting model incorporating the demand in response to discounted tickets. As illustrated in this section, Eq. 3 was applicable to modeling ticket choice behavior and forecasting the proportions of passengers buying tickets. This research revealed that passengers who are able to anticipate future trips did make a trade off between the terms of restrictions (advance purchasing and cancellation charges) and discount rates, which is also beneficial to customers who can purchase tickets in advance as consumers surplus in our model. Our goal is to increase the revenue of HS-rail, and the model may be applied to determine appropriate ticket prices and restrictions.

Pricing is also important in revenue management. This model is not only applicable to inter-city transit firms, but also to all perishable product businesses. For example, in today’s competitive markets, passengers have the advantage of comparing discounted service prices, e.g., car rental, using the internet. If a firm cannot offer lower prices than its competitors because of operating costs, the firm may persuade its customers by reducing the terms of its restrictions because passengers consider restrictions as disutility, especially those having high cancellation risks such as passengers in the business segment. Purchasing tickets over the internet is now popular. The RP data of passenger ticket choice behavior can be collected from actual purchases, and firms can subsequently utilize passenger ticket purchasing records to adjust their ticket fares, advance purchase times, and cancellation charges in order to maximize their revenue.

For further study, passengers should be segmented by value and the restrictions that concern them, rather than by grouping according to business or leisure because some business passengers may have a low value and some leisure passengers may have a high value. Some companies have the advantage of access to FFPs (frequent flyer programs) enabling them to calculate the value of, and restrictions concerning individual passengers. Moreover, as real-time data regarding the availability of seats can be accessed online, some passengers may take advantage of this to delay their purchasing in order to reduce the impact of restrictions. If they are numerous, the behavior of such passengers may affect the accuracy of demand forecasts. It is of interest to identify which group they belong to, how big the group is, and how to change their behavior.

3. Revenue management for single-line multiple-stop systems using passenger behavior

3.1. Implementation combining discounted tickets and seat allocation

Terabe and Ongprasert (2006) discussed the benefits of seat allocation for HS-railways, which include the potential to significantly improve average passenger load, revenue, and reduce the number of rejections. However, seat allocation can only improve the situation for high-demand trains. The results of optimizations for off-peak trains yield significantly less improvements than those for high-demand trains.

For off-peak trains, seat allocation cannot improve the average passenger load factor (APLF), revenue, or number of rejections because seat capacity is not constrained as the number of passengers is much lower than the capacity. For off-peak trains, the APLF and revenue may be improved by selling discounted tickets in order to create greater demand. With reference to the previous section, the revenue and number of passengers may be improved by selling discounted tickets according to passenger behavior for a single-leg system. This section combines the issues of passenger behavior and seat allocation for one-line multiple-stop problems.

The objectives of this section are to (1) implement RM with a passenger behavior model for a one-line multiple-stop system, such as a HS-railway, and (2) discuss the usefulness of discounted tickets to HS-railway systems. In this section, the original demand is modified according to a passenger behavior model as discussed in Section 2. This modified demand is then optimized in the same way as in the methods of Terabe and Ongprasert (2006). The difference between previous studies and the method presented in this section is the introduction of discounted fares. The seat allocation method in this section is described as “optimization with discounted tickets”.

3.2. Methodology


The simulation procedure using optimization with discounted tickets is as follows. 
1. The OD demand in Terabe and Ongprasert (2006) (station 1 – 2 – 3 – 4, 2001 August 1-31) is used as a basic demand situation.
2. It is assumed that the demand for OD 1-4 changes proportionally when discounted tickets are available. The changes in demand due to ticket characteristics are calculated using a passenger behavior model as in Section 2. In fact, SP data for passengers taking this route are not available so we assumed that passengers in OD 1-4 make the same trade off valuation as in Section 2 (competition between HS-rail and airlines on the Keikanshin – Fukuoka route). The changes in demand and revenue were calculated and are shown in Table 3.
3. The HS-rail system was optimized (all ODs on route 1 – 2 – 3 – 4) when discounted tickets were available for OD 1-4. Discounted tickets were only considered for OD 1 - 4 because these are the only ODs which are competitive with airlines, as shown in Figure 6. According to the passenger behavior model, there is no change in demand for the other ODs because there is no switching of demand from or to other modes (in fact, there are other transportation services in other ODs, such as highway buses, but in this study we focused on competition between HS-rail and airlines).
4. In this study, the case 5 discounted ticket is selected (10% discount of ticket fare, 2970 Japanese yen cancellation charge, 3 days advance purchase) because it yields the highest increase in revenue.
5. The demand and revenue of the FCFS policy when discounted tickets are available was calculated using the same number of accepted passengers as in Terabe and Ongprasert (2006). For example, in Table 4, the increase in demand on OD 1-4 for train 1 on August 1 is 7% (from case 5 in Table 5.1), indicating 109 ×107% = 117 persons. The average ticket price on OD 1-4 is decreased to 95%, so the new revenue for OD 1-4 is 
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yen. In this section, 14 trains running on August 1 were selected for optimization, and the calculations for the remaining trains were performed in the same way as train 1. The FCFS policy with discounted tickets is used as input for the optimization with discounted tickets.
6. The results of optimization with demand can be obtained using optimization of FCFS with discounted tickets. The optimization methods are the same as in Terabe and Ongprasert (2006) (maximization of revenue, maximization of Average Passengers Load Factor (APLF), and minimization of the number of rejections).

3.3. Results

The results of optimization without discounted tickets and optimization with discounted tickets for all the trains on August 1 are shown in Figures 7 – 9. Only the best optimization results for each train are shown (the best results are those which optimize all three factors simultaneously: maximization of APLF and total revenue, and minimization of the number of rejections). If there were no such results for a given train, the best alternative is shown, e.g., representing an improvement of all three factors). Again, the patterns of results vary according to three levels of demand. In this section, we selected 14 trains on August 1 for the case study because they contain all three levels of demand.

3.3.1 Peak trains (train 3): 

The demand for train 3 is considered peak time because the demand is higher than the capacity. When discounted tickets are available, the demand for OD 1-4 increases from 180 to 193 passengers. However, the number of passengers accepted on all ODs does not change. APLF also does not change. Indeed, the APLF for optimization without discounted tickets is at its maximum, 100%. The number of rejections increases because the additional demand of 13 passengers on OD 1-4 cannot be allocated. The total revenue of the train decreases because the revenue of OD 1-4 decreases (there is no change of revenue for the other ODs) since the number of seats allocated is the same but the average fare decreases.

3.3.2 Off-peak trains (train 10):
The demand for this train is considered off-peak because when capacity is higher than demand. The demand for OD 1-4 increases from 70 to 75 passengers when discounted tickets are available. The number of passengers accepted on OD 1-4 increases by 5 passengers, which is the same as the increase in demand. APLF and revenue therefore increase when discounted tickets are available, while the number of rejections does not increase from 0 because all demand can be accommodated since the demand is still lower than capacity.

3.3.3 Intermediate trains (train 1) :
Based on calculations, the demand for OD 1-4 corresponding to train 1 increases from 109 to 117 when discounted tickets are available, since new passengers defect from airlines and instead buy discounted tickets for OD 1-4. APLF increases from 94.70% to 96.07% when discounted tickets are available, because the additional 8 passengers on OD 1-4 substitute for the 8 passengers on OD 2-4. The number of rejections increases from 50 to 58 since the total demand increases by 8 passengers, but the number of passengers accepted (272) is the same. Changes in revenue occur on OD 1-4, since the number of passengers accepted increases, and also on OD 2-4, where the number of passengers accepted decreases. The increase in revenue for OD 1-4 is less than the decrease in revenue for OD 2-4. However, the overall revenue for optimization with discounted tickets is better than for FCFS.

3.4. Discussion

The issue of fairness in OD distribution is not discussed in this paper. We conclude from the results that there are three patterns of results, in accordance with Terabe and Ongprasert (2006). The patterns correspond to peak trains, off-peak trains and intermediate trains.
3.4.1 Peak trains
Peak trains are those for which demand is higher than capacity. After optimization without discounted tickets, APLF reaches 100%. Optimization with discounted tickets therefore cannot improve APLF, total revenue, or number of rejections over optimization without discounted tickets. For this case, allocating seats without discounted tickets yields the most advantageous results. The results regarding APLF and revenue for optimization with discounted tickets are however better than those of FCFS. The trains in this category are numbered 3, 4, 6 and 7.

3.4.2 Off-peak trains
Off-peak trains are those for which demand is less than capacity. After optimization with or without discounted tickets, the number of rejections becomes 0. Optimization with discounted tickets therefore yields the most advantageous results because the trains have sufficient capacity to accommodate additional demand generated by passengers switching from airlines. This means that if capacity does not constrain seat allocation, HS-rail may sell discounted tickets in order to increase the number of passengers and the revenue. The trains in this category are numbered 8, 9, 10, 11, 12, and 14.

3.4.3 Intermediate trains
Intermediate trains are those for which demand is less than at peak-time but higher than off-peak time. The total number of passengers accepted in the cases with or without discounted ticket optimization are the same, so the number of passengers rejected when seats are not allocated with discounted tickets is higher than when discounted tickets are available. For optimization with discounted tickets, the additional passengers on the longest OD, 1-4, are accepted while other shorter ODs are optimized without discounted ticket. This means that for optimization with discounted tickets, the additional passengers who switch from airlines occupy seats which can be allocated to existing HS-rail demand. Despite the fact that optimization with discounted tickets yields the best results with respect to APLF, optimization without discounted tickets gives the best results with regard to revenue. The trains in this category are numbered 1, 2, 5, and 13.

3.5 Comparing the advantages of optimization
Passenger behavior modeling can also be implemented for single-line multiple-stop RM systems. Regardless of the fairness of seat allocation over ODs, each seat allocation method has different advantages in different demand situations. Optimization with discounted tickets is certainly the best seat allocation method for off-peak trains, and for peak trains optimization without discounted tickets yields the greatest benefit, while FCFS yields no advantage at all. For intermediate trains, optimization with discounted tickets has the advantage of increasing APLF and total HS-rail demand, but optimization without discounted tickets yields the highest total revenue and lowest number of rejections. For intermediate trains there is therefore no best all-round seat allocation method. Each seat allocation method is suited to a different policy. For example, optimization without discounted tickets is suitable for financial purposes, but optimization with discounted tickets is suitable for promotional campaigning.

4. Conclusion

4.1. Research conclusions
This research demonstrated that HS-rail companies can benefit from implementing RM in terms of: (1) increased passenger surplus, when the average ticket price become cheaper, (2) increased utilization of existing facilities, when the average passenger load factor increases, and (3) increased total revenue.

The focus was on using passenger behavior in order to make forecasts for revenue management. It was found that forecasts based on passenger behavior can improve the capabilities of traditional forecasting methods for revenue management, which mainly rely on time series analyses has and have limited capabilities. In this research, it was revealed that forecasting based on passenger behavior can predict the proportion of tickets purchased, the revenue and times of purchases (number of days prior to departure that passengers buy tickets) based on a passenger choice model. Firms can use the results to select suitable prices and restrictions for each type of ticket they offer.

RP data was used in this research, and transportation firms have plenty of RP data such as passenger purchasing records, which is beneficial for forecasting based on passenger behavior in the real world.

It was proven that seat allocation, which is one revenue management method, can improve not only the revenue of railway companies, but also the average passenger load factor and reduce the number of requests rejected. This improvement can benefit railway companies, which are monopolies in many countries, by maintaining and increasing the goodwill of passengers and society in general through the introduction of revenue management. Moreover, we demonstrated that seat allocation control and passenger behavior modeling can be utilized in combination.
4.2. Further research

Future studies should investigate the effect of the rejection of passenger requests on future revenue. Based on passenger behavior, rejecting passengers may result in a reduction in the number of passengers in the future (and a corresponding reduction in future revenue) because of the bad impression incurred by having a request for a seat rejected. Future revenue may relate to the number of passengers rejected. As the number of passengers rejected increases, the future revenue may decrease. The present revenue therefore does not represent the revenue in its entirety. The overall revenue, which is composed of the present revenue and future revenue, should be considered in future research.

Furthermore, overbooking issues and competition with shorter ODs, such as highway buses, should be included in the RM for single-line multiple-stop systems.
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Tables

Table 1: Average value of 330 samples
[image: image17.emf]Parameter

Shinkansen

(HS-train)

Airlines

Line haul cost (full fare) (yen) 14,980 18,300

Line haul time (min) 168 65

Access cost (yen) 442 901

Access time (min) 20 38

Egress cost (yen) 252 558

Egress time (min) 11 23

Time outside vehicle (min) 29 61

Number of transfer 2 3

Total travel time (min) 228 187

Total travel cost (yen) 15,674 19,759


Table 2: Coefficients and goodness of fit
[image: image18.emf]Coefficient t-stat Coefficient t-stat

Fare /1000yen -0.260 -4.814 -0.134 -5.062

Restrictions /1000yen -0.076 -4.580 -0.013 -3.318

Dummy of non-reserved -0.963 -4.280 -0.307 -3.915

Time outside vehicle /10 minutes -0.163 -5.711 -0.257 -9.716

Log-sum 0.457 4.743 0.210 5.228

Rho-square 0.237 0.436

Number of samples 130 200

Number of observations 1170 1800

Parameter

Business Leisure


Note: The upper and lower nest coefficients in the Nested Logit Model can not be separately identified because simultaneously estimation was used.
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Table 4: Comparison of demand, and revenue FCFS when discounted ticket is available / unavailable for train 1 on August 1 

[image: image20.emf]OD pairs

Total

demand

(person)

Accepted

passenger

(person)

Revenue

(yen)

Total

demand

(person)

Accepted

passenger

(person)

Revenue

(yen)

1,2 32 32 332,800 32 32 332,800

1,3 23 23 312,340 23 23 312,340

1,4 109 93 1,486,690 117 93 1,419,194

2,3 22 17 106,930 22 17 106,930

2,4 79 53 487,810 79 53 487,810

3,4 57 32 93,340 57 32 93,340

Total 322 250 2,819,910 330 250 2,752,414

FCFS: w/o discounted ticket FCFS: with discounted ticket


Table 5: Comparing advantages of optimization with and without discounted ticket

[image: image21.emf]Train types

Advantage of optimization

with discounted ticket

Advantage of optimization

without discounted ticket

Peak train ---

Revenue, Number of

passenger rejection

Off-peak train Revenue, APLF ---

Intermediate train APLF

Revenue, Number of

passenger rejection


Figures
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Figure 1: Function of risk at different constant
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Figure 2: The number of passengers of both modes (data from Ministry of Land, Infrastructure and Transport). Note: sudden drop in 1995 was caused by the great Hanshin earthquake in Jan 1995
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Figure 3: Nested Logit Model structure. (Nest 1 is the nest of HS-rail (full fare and discounted fare), and nest 2 of airlines; i = alternative.)
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Figure 4: Comparison of real share and forecasted share; leisure trip 200 samples, business trip 130 samples
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Figure 6: The competitive OD between airlines and HR-rail
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Figure 7: Comparison of the total revenue of 3 methods (train 1-14 on August 1)]
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Figure 8: Comparison of the average passenger load factor of 3 methods (train 1-14 on August 1)
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Figure 9: Comparison of the number of rejection of 3 methods (train 1-14 on August 1)
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[image: image34.emf](100M JPY/y) Percent

1 no no no 551.8 base 0.0%

2 13400 5950 14 543.3 -8.5 -1.5%

3 13400 5950 7 546.0 -5.8 -1.1%

4 13400 5950 3 551.0 -0.8 -0.2%

5 13400 2970 3 559.1 7.2 1.3%

6 13400 2970 7 554.6 2.8 0.5%

7 13400 2970 14 551.3 -0.5 -0.1%

8 10420 2970 14 484.8 -67.0 -12.1%

9 10420 2970 7 487.2 -64.6 -11.7%

10 10420 2970 3 490.6 -61.2 -11.1%

11 10420 5950 3 484.6 -67.2 -12.2%

12 10420 5950 7 482.1 -69.7 -12.6%

13 10420 5950 14 482.7 -69.1 -12.5%

14 7440 2970 14 375.3 -176.5 -32.0%

15 7440 2970 7 377.3 -174.5 -31.6%

16 7440 2970 3 379.8 -172.0 -31.2%

17 7440 5950 3 375.1 -176.7 -32.0%

18 7440 5950 7 372.2 -179.6 -32.5%

19 7440 5950 14 372.5 -179.3 -32.5%

Figure 5: Expected share and revenue of HS-rail with different types of discounted ticket
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